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Abstract 

The Kerberos authentication system is based on the trusted 
3rd party Needham-Schroeder authentication protocol. 
The system is one of the few industiy standards for 
authentication systems and its use is becoming fairly 
widespread. The system has some limitations, including the 
fact that compromise of the on-line trusted 3rd party is 
catastrophic and that the system is vulnerable to 
dictionary attacks. Further, while the system provides for 
authentication and key-exchange, it does not provide non- 
repudiation (i.e. digital signature) services, as a result of 
which an organization using Kerberos would have to 
maintain a separate security infrastructure for the latter 
function. 
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Many of these limitations are traceable to the decision of 
the Kerberos designers to solely use, freely available, 
symmetric key cryptosystems. Using asymmetric, or public 
key, cryptosystems in an authentication protocol would 
prevent some of the shortcomings addressed here. Several 
such protocols have been proposed and some have been 
implemented. However, all these designs are either 
completely different from the Kerberos system, or require 
major changes to the basic system. Our goal in designing 
Yaksha’ is different. Having observed the fairly tortuous 
and time consuming process the Kerberos community has 
wound through to finally arrive at what is a mature, and 
from all appearances a fairly secure, standard, we are of 
the firm conviction that any attempts to improve Kerberos 
would do so with only minimal impact to the protocol and 

’ In Greek mythology, Kerberos is the three headed dog that guards the 
gates of Hades, “the land of the dead, underworld’, To guard something 
more valuable, for instance, the gates of heaven, we need a Yaksha. In 
Hindu mythology, Yakshas (Yakshini is the feminine), are ‘good’ demi- 
gods who, among other things, guard the gates of heaven. Yakshas are 
also extremely flexible and can transform themselves into any other form 
e.g. birds, cows, and presumably, three headed dogs. :-) 

the source tree. In this work we describe Yaksha, a new 
approach to achieving these goals. 

Yaksha uses as its building block an RSA variant 
independently invented by Boyd [Boyd891 and by Ganesan 
and Yacobi [Gane94], in which the RSA private key is split 
into two portions. One portion becomes a user’s Yaksha 
password, and the other the Yaksha server’s password for 
that user. Using this simple but useful primitive we show 
how we can blend the Kerberos system with a public key 
infrastructure to create Yaksha, a more secure version of 
Kerberos with minimal changes to the protocol. 

KEYWORDS: Authentication, Authentication Protocols, 
Dictionary Attacks, Digital Signatures, Kerberos, Key 
Exchange, Non-Repudiation, Passwords, Yaksha 

1.0 Motivation 

The Kerberos authentication system [ KOHL931 based on 
the classic Needham-Schroeder authentication protocols 
[NEED781 with extensions by Denning-Sacco [DENN78], 
uses a trusted 3rd party model to perform authentication 
and key exchange between entities in a networked 
environment. Kerberos uses symmetric key cryptosystems 
as a primitive, and initial implementations use the Data 
Encryption Standard (DES) as an interoperability standard, 
though any other symmetric encryption system can be used. 
After close to a decade of effort, the Kerberos 
authentication system is now a fairly mature standard 
whose security properties have held up fairly well to 
intense scrutiny. Further, it is finally the case that vendors 
are delivering Kerberos as a supported product. It has also 
been adopted as the basis for the security service by the 
Open Software Foundation’s (OSF) Distributed Computing 
Environment (DCE). Consequently, we expect 
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Kerberos to be among the most widespread security 
standards used in distributed systems over the next several 
years. 

Kerberos does have limitations, and among the more 
serious ones are: 

Compromise of the central trusted on-line Kerberos 
server is catastrophic, since it retains long term user 
secrets. Kerberos is vulnerable to password guessing 
dictionary attacks. 
Kerberos does not provide non-repudiation services 
(i.e. digital signatures) 

The first limitation is intrinsic to the Needham Schroeder 
protocol when used with symmetric cryptosystems like 
DES. The second problem is also a major issue since 
experience suggests that password guessing attacks tend to 
be far more common than most other forms of attacks - 
they are simple and effective. Finally, Kerberos was 
designed to provide authentication and key-exchange, and 
hence it may be unfair to characterize its not providing 
digital signatures as a “limitation”. However, most 
organizations using Kerberos will also want to implement 
digital signatures, and will have to maintain separate 
security infrastructures for Kerberos and for digital 
signatures - a significant cost. 

A major reason for these limitations is that Kerberos does 
not use asymmetric, or public key, cryptosystems. It is a 
fairly straightforward exercise to create a paper design of 
an authentication protocol that uses public-key 
cryptography and avoids some of these limitations. And 
with significantly more effort, one can design a full fledged 
system with a public key infrastructure which achieves the 
same goals as Kerberos without its associated limitations. 
DEC’s SPX [TARD91] system is one such example. Our 
motivation for this work begins from a different set of 
constraints. Namely, we believe that the effort required to 
get a multi-vendor supported standard authentication 
system whose security properties have been widely 
examined is probably the hardest part of implementing a 
new system. For the most part, this effort has already been 
exerted on behalf of Kerberos, and consequently we 
believe any addition of public-key cryptography to 
Kerberos must meet the following two constraints: 

It should require minimal changes to the protocol as 
defined in [KOHL93]. Specifically, analogous to 
generational increments in the instruction set of a 
microprocessor, the changes to the Kerberos protocol 
should be incremental to increase the likelihood of 
backward compatibility. 
It should require minimal changes to the Kerberos 
source tree, and again the changes should be primarily 
in  the form of additions. 

These two constraints are driven by practical 
considerations, but are difficult to meet. For instance, Kohl 
[KOHL911 (as quoted in [SCHN94]) suggests that: 
“Taking advantage of public-key cryptography would 
require a complete reworking of the protocol“. We do not 
believe this is necessary and this work describes Yaksha, a 
new method of adding public-key cryptography to 
Kerberos, that to a large extent meets the first constraint. 
Further, we strongly suspect that our approach meets the 
second constraint of minimizing changes to the source tree, 
but this can only be proven when the system is built. 

2.0 Relevant Prior Work 

We first describe the relevant prior work that we use as 
building blocks in  our design and then also comment 
briefly on other approaches to the same problem. Readers 
familiar with the Kerberos messaging structure, public key 
cryptography and RSA are urged to skip directly to Section 
2.5 

2.1 Kerberos: A Protocol Overview 

For the sake of clarity, in this paper we will use the 
“simplified” version of the Kerberos protocol described by 
Neuman and Ts’o in [NEUM94]. The extension of our 
ideas to the complete protocol, as described in [KOHL93], 
is straightforward. Further, the Kerberos overview in this 
section is based on [NEUM94], and for the sake of 
consistency uses almost the same notation. The 
fundamental message exchanges are shown below in 
Figure- 1. 

We now describe the messages in further detail. Message- 
I ,  known as as-reg (request to authentication service) 
consists of 

as-req: c ,  f g s ,  time-exp, n 

where c is the name of the client (user), rgs the name of the 
ticket granting service for which the client is requesting a 
ticket granting ticket T,,,,,. time-exp is the requested expiry 
time of the ticket (typically eight hours) and n is a fresh 
random number. This message is sent in the clear, and all 
parts of it  are visible to an eavesdropper. The 
authentication server (as)  responds with Message 2, 

as-reg: {K‘ I , , ,  time-exp, n, ... /K , ,  {T,,,,,IK,,, 

where K, ,,, is the session key to be shared between the 
ticket granting server (tgs) and the user for the lifetime of 
this ticket. Note that we are using the notation { M I K ,  to 
denote the encryption of message M using a symmetric 
encryption system, e.g. DES, using key K. Kc,,g5 and the 
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Authentication 

Figure 1: Kerberos message exchange overview (adapted from [NEUM94]). In message 1 the user requests a 
ticket granting ticket (TGT). the server creates such a ticket, looks up the user’s password from the Kerberos 
database, encrypts the TGT with the password and sends it to the user in message 2. The user decrypts the TGT 
with her password, and stores the TGT on her computer. Then, when she wants to access a service, she sends 
message 3, which contains the TGT to the server, who verifies the TGT and sends her back, in message 4, a ticket 
to access the server and a session key. In message 5 she presents the ticket to the server, which verifies it and also 
recovers the same session key from it. If mutual authentication is required, the server, in message 6, sends back a 
message encrypted with the session key. 

134 



other information is encrypted with K, which is the user’s 
password (the long term secret which is shared with the 
Kerberos server). Only a user who knows K, will be able to 
decrypt this message to obtain Kc,fgs. This key Kc,rgs is also 
embedded in the ticket Tc,fgsr which in the as-rep is 
encrypted using Kfgs, a long term key known only to the as 
and the tgs. After decrypting the first part of the message, 
the user now stores the data received in the as-rep on the 
local computer. The main purpose behind this is to avoid 
storing the long term key K, on the computer where it may 
be compromised. Rather, the key Kc,fgs is used in lieu of 
K,. Since Kc,fgs is relatively short lived, the damage an 
attacker can cause by learning this key is less. 

It is worth observing that the as does not verify the identity 
of the user before responding to a user’s as-reg with an 
as-rep. Rather as relies on the fact that to be able to make 
any use of the as-rep, the recipient must know K,. So an 
attacker can actually get an as-rep from the as by sending 
a fraudulent as-reg. The attacker can then take the portion 
of the as-rep encrypted with K,, and attempt to decrypt by 
taking guesses at K,. Since K ,  is typically a user selected 
password, K, may well be a poor password, which the 
attacker can guess. Even if this “vulnerability” is closed 
(there is an option to do so in Version 5 of Kerberos), an 
attacker can always eavesdrop on the network to obtain 
information using which a password-guessing attack can be 
mounted. 

When the client wishes to obtain a ticket to access a server, 
it sends to the tgs, Message 3, 

This message consists of the name of the server, s, the 
expiry time, time-exp, requested and the random number, 
n, in cleartext. It also contains the encrypted ticket granting 
ticket (Tc,rgs}Kfgs which was received by the client in the 
as-rep message. Upon receipt of the message the tgs, 
which knows K,,, can decrypt and recover Tc,rgs, which is a 
valid ticket. In order to prevent a replay attack in which an 
attacker might gain some benefit by re-sending a valid 
/Tc,fgs)Kfgs at a later time, the tgs-req message also contains 
an authenticator, which is a timestamp, ts, a check sum and 
other data, all encrypted with the session key Kc,fgs. Since 
this session key is embedded in the ticket Tc,rgs, which the 
tgs has recovered, the tgs, can decrypt the authenticator 
and verify the time stamp and check sum. By maintaining a 
cache of recently received authenticators, the tgs can detect 
replays. 

Having verified the authenticity of the tgs-req, the tgs 
responds with Message 4,  

tgs-rep: (K,,,, time-exp, n, s,...lKc,fgs, lT,.JK, 

This message is very similar in structure and purpose to the 
as-rep, message:. The first part consists of a session key, 
expiry time, etc., encrypted with Kc,rgs. The client can 
decrypt this to recover the session key and other 
information. The second portion is a ticket to access the 
server, encrypted with the long term key shared by the 
server and the tgs. The client now constructs Message 5 
and sends it to the server, 

This message is similar to the tgs-reg, in that it contains an 
encrypted tickel. (T,,,)K, which the server can use to 
recover T , , ,  which authenticates the client to the server 
and, among other information, contains the session key 
Kc,,y. The server then uses K , ,  to decrypt the first part of the 
message, the authenticator, which has a time-stamp, ts, a 
check-sum, ck, etc. 

Having verified i:he authenticity of the client, the client and 
server are ready for communication. However, in some 
cases the client may request mutual authentication, in 
which case the server must first respond with Message 6, 

ap-rep: ltslK,., 

which is basicidly proof that the server successfully 
recovered K,,, from the ticket Tc,s, which means the server 
knew K,, which in turn is proof of authenticity of the 
server. 

The actual protocol has a number of options and is more 
complex, but the basic structure is defined by these six 
messages. The interested reader is referred to [KOHL931 
for more details. 

2.2 Public-Key (Asymmetric) Cryptosystems 

This subsection provides a quick overview of public-key 
cryptography. In public-key systems each entity, i ,  has a 
private key, Pi, ,which is known only to the entity, and a 
public key, Ui, which is assumed to be publicly known. 
The system has the special property that once a message is 
encrypted with a user‘s public-key, it can only be decrypted 
using that user’s private-key, and conversely, if a message 
is encrypted with a user‘s private-key, it can only be 
decrypted using that user’s public-key (in some systems 
only operations i n  one direction are permissible). So, if the 
sender wishes to send a message to receiver, i ,  then the 
sender “looks-up” i’s public key, U ,  and computes 
C=E(M,U,) and sends C to i. i can recover M using its 
private-key, Pi, by computing M=D(C, Pi). An adversary 
who makes a copy of C,  but does not have Pi, cannot 
recover M. Publiz-key cryptosystems are not however very 
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efficient (e.g. RSA is roughly 1000 times slower than DES 
when both are implemented in hardware, and 100 times 
slower when both are implemented in software 
[SCHN941), and typically cannot be used for large 
messages. 

Public-key cryptosystems can also be used for digital 
signatures. The signer, i, computes S=E(M,Pi) and sends 
(M,S) to the recipient. The recipient "looks-up" i's public- 
key, Ui, and then checks to see if D(S,Ui) is equal to M. If 
so then the recipient is convinced that i signed the 
message, since computing an S, such that M=D(S,Ui), 
requires knowledge o f ,  i's private key which only i knows. 

2.3 Review of the RSA Cryptosystem 

RSA[RSA78] is a public-key based cryptosystem that is 
believed to be very difficult to break. In the RSA system 
the pair ( ei , ni ) , is user i's public-key and di is the user's 

private key. Here ni = p X 4 , where p and are large 

primes, and ei Xdi = lmod@(ni) ,  where 

@(ni) = ( p  - l)(q - 1) is the Euler Toitient function 
which returns the number of positive numbers less than ni, 
that are relatively prime to n, . To encrypt a message being 

sent to user i, user j will compute C = Me' modni and 

send c to i. i can then perform M Cd' modni to 

recover M .  The RSA based signature of user i on a 

message, M , is S Mdi  modn,. . The recipient of the 

message j ,  can perform M e S" modn, , to verify the 
signature of i on M .  Note that in RSA encryption and 
signatures can be combined. 

2.4 Review of Public Key Certificates 

Since a recipient of a message must know the sender's 
public-key, a method must be provided to securely provide 
this information to the recipient. One common method 
[KENT931 is the concept of certificates. A certificate is 
basically a binding between an entity and its public key, as 
vouched for by some authority. So a certificate in a RSA 
based infrastructure could contain Cert = { i ,e i ,ni}  . The 
certificate is signed by some trusted third party called a 
Certificate Authority (CA). So when i sends j a signed 
message S = Mdi  modni, it is accompanied by 

( Cert)dcA mod ncA . j can recover i's public key from the 

certificate using (ecA ,n,) , the Certificate Authority's 
public-key which is assumed to be universally available. 
In an informal sense, the degree of trust in the off-line 

Certificate Authority is (arguably) much less than the trust 
placed in an on-line Kerberos server. 

2.5 Review of Boyd's RSA Variation 

Boyd [Boyd891 introduced an interesting RSA variation 
for "digital multisignatures". In his scheme the RSA 
private key d is split into multiple portions d,, d,.. . . . d, , 
where d, X d  ,.... d, ~d mod@(n) . The ith portion 

di is given to the ith user. The users can then jointly sign a 

message . For example if there are two users ( k  = 2), 
then the first user computes SI = Md' modn , and the 
second user completes the signature by computing 
S SIdZ modn . The resulting signature is identical to 
one signed by the regular RSA private key (i.e. 

S ,  = M d  modn) and can hence be verified, in one 
operation, using the regular public-key. 

For simplicity of notation we are dropping the "mod n" 
from our explanation for the rest of this paper, but all 
exponentiations are modulo the appropriate modulus. 
For instance, M d l  , refers to M dl  mod ni . 

2.6 Review of Ganesan-Yacobi RSA Variant 

Ganesan and Yacobi [GANE94] reinvented Boyd's system, 
and made four significant additional contributions. All 
their results apply to the two party case, but are believed to 
be generalizable. The four results are (using the same 
notation as in our description of Boyd's scheme): 

They prove mathematically that breaking the joint 
signature system is equivalent to breaking RSA. The 
attacker can be an active/passive eavesdropper or one 
of the participants. They assume that key generation is 
conducted by a trusted 3rd party, like a tamper proof 
chip, and the factorization of the RSA modulus and 
@(n) are discarded after key generation and not 
known to any of the participants. 
They describe the following key exchange protocol 

User 1 sends x ' to User 2. User 2 recovers 

x = ((21 > d 2  1'. Similarly User 2 transmits ydz to 
User 1, who recovers y , The users can use as the 

session key some function of x and y (e.g. x @ y ). 
Ganesan and Yacobi proved mathematically that 
breaking this key exchange protocol is equivalent to 

d 
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breaking RSA. The attacker can be an active/passive 
eavesdropper or one of the participants. 
Next, they introduce the concept where one of the two 
users is actually a central server which maintains one 
portion of every user's private key. In order to sign a 
message the user must interact with this server (which 
they prove, cannot impersonate the user). Having to 
interact with such a central server to sign runs 
somewhat counter to prevailing conventional wisdom. 
However, it turns out to have several important 
practical advantages including instant revocation 
(without difficult to maintain Certificate Revocation 
Lists), a central point for audit and as discussed below, 
a method of providing digital signatures in an era 
where smart cards are not yet ubiquitous. 
Ganesan and Yacobi proved mathematically that even 
if one of the two portions, d, and d 2 ,  of the private 
key, is short, say 80 bits, then for an active or passive 
eavesdropper to break the system is still as difficult as 
breaking RSA. As a consequence, a digital signature 
infrastructure can be built where users who remember 
short (say ten characters) passwords, can interact with 
the central server to create RSA signatures. The 
signatures created are indistinguishable from those 
created using a full size RSA key stored on a smart- 
card. They conjectured, but do not prove, that the 
system is still secure from a malicious central server 
even when the user keys are short. Michael Weiner 
[WEIN941 illustrated an attack where a malicious 
server can mount an attack that runs in roughly 

o ( m  steps, where 1 is the number of bits in  the 
short user password. So for instance if a security factor 
of 240 is required, than the user password should be 
80 bits long. Again, this is an attack mounted by a 
malicious server, not an eavesdropper. 

In I .  and 2. above we observe that although the goals are 
signatures and key-exchange respectively, authentication is 
a natural by-product. Ganesan and Yacobi suggest that this 
system is a simpler alternative to Bellovin and Merrit's 
Encrypted Key Exchange (EKE) [BELL92](the RSA 
version) and unlike EKE, does not require the two parties 
to share a common secret key. 

Yaksha uses results l . ,  3. and 4. to envisage an 
authentication system, in  which the server, instead of 
sharing a common symmetric key with each user, retains a 
portion of each user's private. RSA key. Several 
authentication protocols can be created using this basic 
idea. In this paper we restrict ourselves to illustrating how 
we can modify Kerberos using these results to arrive at a 
Kerberos-like protocol. 

2.7 Other Potential Approaches to a Better Kerberos 

The SPX system [TARD91] is a full-fledged public-key 
based authentication system which does not require a 
trusted on-line server. It's protocol is sufficiently different 
from Kerberos to make integration of these systems require 
a complete reworking of the Kerberos protocol. Bellovin 
and Merrit's Encrypted Key Exchange [BELL921 can 
potentially be integrated with Kerberos to prevent 
dictionary attacks. However, their multi-pass protocol 
would require very significant changes to the Kerberos 
system. A nice feature of EKE is that the authors show how 
it can be implemented using the RSA, Diffie-Hellman or El 
Gama1 public key cryptosystems. Our system however, to 
our knowledge, works only with RSA. Also, unlike our 
system, EKE assumes that the participants share a common 
long term secret. Finally, both these systems, like Yaksha, 
generate public-private key pairs on the fly, but all three 
use these dynamic keys in totally different ways. 

The Sesame project [MCM094] also integrates public-key 
cryptography with Kerberos, but the focus there has been 
on adding public key cryptography to the inter-realm 
portions of Kerberos, to make those aspects more secure. 
Our approach can be used to meet their objectives. 

3.0 The Yaksha Design Goals 

We now discuss our design goals in more detail. 

3.1 Removing Vulnerability to Catastrophic Failure 

The Kerberos system shares a permanent secret with every 
user and service. Compromise of this database is 
catastrophic. Our most important design goal is to alleviate 
this problem. Practically speaking, compromise of the 
server in any server-centric design will result in some 
damage. We believe that any such compromise will be 
short lived (for example, if the database is surreptitiously 
copied, then fraudulent use of services will at some point 
be detected), and hence our goal is to minimize the damage 
that can be caused in the interval. Specifically: 

Compromise of the server should not allow the attacker to 
impersonate a client to the server 

or vice versa. 

Yaksha meets this goal, with the caveat that (in the version 
of our system where the user has a short private key) an 
attacker who compromises the server (unlike an 
eavesdropper) can mount an expensive dictionary attack 
against the user (see Section 3.2). 
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3.2 Removing Vulnerability to Dictionary Attacks 

Dictionary attacks are a common form of attack, and it is 
well known that many systems (e.g. UNIX [MORR79] or 
Kerberos) are vulnerable [ KARN891 to this attack. 
However, all dictionary attacks are not alike, and it is 
worth considering a taxonomy of such attacks. There are 
four parameters to a dictionary attack: 
1 .  The known plaintext, S, which can take two forms: 

0 a string S1 which is known in advance to the 
attacker. An example of SI  is a string of 
zeroes. 
a string S2 which is not known to the attacker 
in  advance, but "he'll know it when he sees 
it". An example of S2 would be any string 
with some form of predictable redundancy, 
for instance a time stamp. Another example 
would be if S2 were a number with particular, 
easily tested, mathematical properties, for 
instance a prime, or a non-prime with no 
small factors. 

2 .  The ciphertext C, typically of the form C=F(S,k) 
where k is the password being sought. 

3. The password space P being guessed consists of N 
passwords. The attacker will take guesses pI ,  p2, ...,pN, 
till  he finds a pi which is equal to k. 
The function F and its inverse (assuming one exists), 
which are typically public information. It is important 
to draw a distinction between the cases when F is a 
symmetric encryption system like DES, and when F is 
an RSA function of modular exponentiation. 

4. 

These four parameters yield at least two distinct forms of 
dictionary attacks: 

S 1 type attacks. Here the attacker typically computes 
F(Sl,p,) (or perhaps F'(SI,p, )) for every p I  in P until 
he discovers a pI  where, F(SI,p,) = C (or F 
'(Sl,p,)=C). This is the most dangerous form of 
attack since the attacker can (a) Precompute the 
F(Sl,p,) for all or many p I  and (b) The attacker can 
amortize his attack against several users. UNIX is 
vulnerable to such attacks. 
S2 type attacks. Here the attacker is typically 
computing (C,pJ and is hoping to find an S2 which he 
can recognize. Here the attacker cannot start 
computations before he captures C. Further, since C 
will be different for each instance, no amortizations of 
attack are possible. The Kerberos system is vulnerable 
to this form of attack. 

Our design goal is a system that is not vulnerable to either 
form of attack from an eavesdropper. 

As mentioned earlier, in the event of server compromise, 
AND, the use of short keys by the user, our system is 
vulnerable to the second form of dictionary attack. 
However, since the attacker would have to use modular 
exponentiation as the function F, the resulting attack will 
be far slower than a dictionary attack against DES, and 
further, the attack cannot be amortized. 

3.3 Minimize Protocol Changes 

We have an extremely minimalistic approach to any 
protocol modifications. Specifically: 

We do not want additional "rounds" to any protocol 
exchange. We constrain ourselves to the basic six 
messages described earlier. 
We do not want to change any important structures, 
e.g. the structure of the tickets. 
We will permit additional structures to be added to the 
messages, but restrict these to the barest minimum to 
meet our security goals. 

0 

0 

For the most part Yaksha achieves these objectives. The 
most significant changes we are willing to make are: 

assuming the existence of an off-line public-key 
Certificate Authority. 

0 we add certificates as additional strings to some of the 
messages. 
most of our changes are in  the way encryption is 
performed. For instance, instead of a DES encryption 
with a user's DES key, we may encrypt using the user's 
RSA private key. Observe that such changes are NOT 
protocol changes, since the protocol does NOT specify 
the kind of cryptosystem to be used. 

We believe that these minimal protocol changes will result 
in changes to the source tree being correspondingly small. 

3.4 Upward Compatible With Smart Cards 

We expect Yaksha to be deployed in environments that 
today do not have smart-cards, but which within five years, 
will have significant smart card deployments. 
Consequently, the design should be seamlessly upward 
compatible, and be able to take advantage of, smart cards. 
As we mentioned earlier, we see Yaksha being used with 
short user private keys (passwords) in the near term, and 
migrating to full length RSA private keys as smart cards 
become ubiquitous. 

3.5 Reuse Authentication Infrastructure for Digital 
Signatures 

Before describing this design goal, we wish to point out 
that the entire Yaksha design can be viewed independent of 
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this design requirement, and the way we meet it. The 
design goal is that the authentication and key-exchange 
infrastructure for Yaksha be reused for digital signatures. 
While theoretically this may not seem important, in 
practice it would be expensive for an organization to have 
to maintain two parallel sets of security infrastructures. By 
"reusing infrastructure" we refer specifically to three 
components: 
0 The user private secret used for authentication should 

also be used for digital signatures. 
0 Any certificate scheme used for authentication should 

also be used for digital signatures. 
0 The secure database be common 

Observe that the last requirement refers to the use of digital 
signatures in  an environment where interaction with a 
central server is essential. Yaksha meets these 
requirements, and satisfies the digital signature 
requirements by the addition of another two messages to 
the basic protocol. 

We note, in passing, that one reason for our being 
enamored with central servers has to do with a key escrow 
system we have developed [GANE94b], again using the 
Ganesan-Yacobi scheme as a building block. In this system 
a central server, which does not know user private secrets, 
performs key exchange between two parties and upon 
authenticated request from authorities, reveals the session 
key for a particular session. Yaksha, like Kerberos, can be 
easily modified to perform the same function, since both 
generate session-keys. Unlike Kerberos, Yaksha does not 
have the ability to compromise a user's long term private 
key - a desirable property. More discussion on key-escrow 
is beyond the scope of this paper, but we observe that our 
system allows us to reuse the same infrastructure for 
authentication, digital signatures and key-escrow, a 
significant saving. 

4.0 Yaksha 

We are now ready to describe the basic Yaksha protocol. 
For each step of the protocol, we also reproduce the 
equivalent Kerberos step so that the differences are 
obvious. We shall explain the notation as we describe the 
protocol, but note now that, like in our Kerberos overview, 
(MessugelK, means the Message is encrypted using a 
symmetric cryptosystem like DES using key K,. When we 
say, [MessageIAX we mean the RSA modular 
exponentiation operator with the corresponding modulus N ,  

i.e. [Message]x modN. Further, [Cerf-c]"D,,, is the 
public key certificate for user c, signed by the certificate 
authority, ca. 

4.1 Initial key Creation 

How initial keys are created in any public-key 
cryptosystem, is largely a question of policy. e.g. should 
the certifying authority also create keys? For the purposes 
of this paper, i t  suffices to present one practical scheme, 
and assume that the specific method is independent of the 
Yaksha protocol and hence can be performed in any 
desired fashion. 

We envisage that an organization's Security Department, 
perhaps the same organization that issues Photo-IDS, has a 
terminal connected to a secure computer (e.g. a tamper 
proof chip). A user walks up to this terminal, enters her 
name, etc. This information is certified by a security 
officer. The computer creates an RSA public-private key 
pair (E,N,D), prompts the user for a password, which 
becomes D,. the user C I S  portion of the RSA private key D .  
The computer computes Dcy which is the Yaksha server's 
portion of that user's RSA key. If the computer is also the 
certifying authority, it computes [c, E,.,N,.IADc, as that user's 
certificate (we are of-course greatly simplifying the 
complex structure [ KENT931 an actual certificate would 
take, since those details are orthogonal to the discussion 
here). The computer can then transfer Dry and the 
certificate to the Yaksha server using a secure channel (for 
instance by encrypting with the Yaksha server's public key 
(Ey,NJ), Finally, once smart cards are ubiquitous, the user- 
password may become irrelevant and the computer can 
download the user's (long) private key directly to his smart 
card. 

We reiterate that no particular method of key generation is 
critical to the functioning of Yaksha, and the above is only 
meant to be one possible scenario. We do note that we 
expect that in Yaksha the user private key will be more 
long-lived than in Kerberos. Since Yaksha is not 
vulnerable to some of the attacks Kerberos is vulnerable to, 
we do not see this as a problem, and from a user 
perspective see it as beneficial. 

At the end of this process for every user/service, there 
exists: 

a private portion D, known only to the 
user/service/en ti ty . 
the Yaksha server has a private portion D,, for every 
user/service/entity . 
certificates exist on the Yaksha server and possibly on 
other services, like a name service, of the form [c, E(,  
N ,  IAD,,,. 
everybody knows (EC<!,NL[,)  the certifying authority's 
public key. 

0 
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All other intermediate key generation information has been 
destroyed (hopefully within the safe confines of the key 
generation tamper proof chip). 

4.2 Message Structure Overview 

In Yaksha we desire that to authenticate itself to the 
Yaksha server, the client reveal knowledge of D,. (which is 
of-course completely different from revealing D,. itself) to 
the Yaksha server, and that the Yaksha server reveal 
knowledge of Dcy to the client. When a service receives a 
ticket from a client it requires proof that the Yaksha server 
has vouched for the ticket (like in Kerberos), and further, 
(unlike in Kerberos) requires proof that the client has 
requested the ticket. i.e. i t  trusts neither the client nor the 
server individually, but trusts the message if both vouch for 
it. Similarly, the mutual authentication response to the 
client should require a message effectively vouched for by 
both the service and the Yaksha service. 

Like in Kerberos, we do not want to store the user's 
private-key D,. on the computer for more than the barest 
minimum time. Hence we use a temporary RSA private- 
public key pair, which is generated on the fly, and then 
have the client and the server collaborate to sign the public 
portion of this temporary key to create a temporary 
certificate that is valid for, say, eight hours. Note, that the 
authenticity of this temporary pair is verified using the long 
term public-key. Further, the Yaksha server never sees the 
private-key portion of the temporary pair. 

To summarize: 
An entity's secrets are known only to the 
entity and no one else. 
No one party (the client or Yaksha) can spoof 
the server, without collaborating with the 
other. 
Similarly neither the server nor Yaksha can 
spoof the client individually. 
A user's long term private secret is not stored 
on any computer for any lengthy period. 
Instead this long term private key is used in 
conjunction with the corresponding Yaksha 
key for that user to sign a certificate 
consisting of a temporary public key. 

0 

Somewhat surprisingly, all of the above can be achieved 
with very minimal changes to the protocol. We do assume, 
that clients and servers have an easy method of retrieving 
certificates, perhaps from a name service. Alternately, the 
appropriate certificates could be attached to messages from 
the Yaksha server. 

4.3 The Yaksha as-req and as-rep messages 

In Kerberos the initial as-reg message is: 

Kerberos:- as-req: c, tgs, time-exp, n 

The corresponding Yaksha message is: 

Yaksha:- as-reg: c, tgs, time-exp, 
[[TEMP-CERT]"Dc, nIADc 

Here TEMP-CERT contains (c, E,.,rrm,,, Nc,reml,. expiry-time, 
etc.) where (Ec,,?,,,/,, Nc,rem,,) is the public portion of the 
temporary RSA private-public key pair which the client c 
generated, and expiry-time, is the interval for which it is 
valid. The TEMP-CERT is "signed" with the user's portion 
of his long term private key, D,.. This structure is then 
concatenated with a random string n, and again 
"encrypted" with D,.. This prevents an attacker who later 
sees TEMP-CERT, from seeing [TEMP-CERT]"D, and 
mounting a dictionary attack by taking guesses at D,. and 
checking if [TEMP-CERT]"guess = [TEMP-CERT]"D,. 

Let us denote [[TEMP-CERTJAD,, n]"D, by Y. The 
Yaksha server performs [[ Y]"D, ,]"Ecj] to recover 
Z=[TEMP-CERT]AD, and n. The server recovers the 

performing 
[[Z]^D, ,]^E,]= TEMP-CERT. Observe that in successfully 
recovering a valid TEMP-CERT, the Yaksha server has 
authenticated the client. The server then completes the 
signature on the temporary certificate by performing 
[ZI"D<,. 

temporary certificate by 

At this point in Kerberos the reply to the client is: 

Kerberos :- as-rep: {Kc,rR.r, time-exp, n, . . . /Kc, { Tc,rg,sJKrgs 

The Yaksha message is: 

Yaksha:- as-rep:[K, rg,, time-exp, n,...]"E,,,,,,, 
[T-c,tg~]"Dr~,,, [ [TEMP-CERT]"D,]"D,, 

Observe that the first two components of the Kerberos and 
Yaksha messages are identical, expect that the encryptions 
are performed using modular exponentiation and using 
different keys. The third component of the Yaksha as-rep 
is basically a certificate signed by the client and the Yaksha 
server verifying the authenticity of the temporary public- 
private key pair. The client can "decrypt" the first part of 
the message using D,.,reml, which only it knows, to recover 
the usual Kerberos information. The second portion is the 
ticket granting ticket encrypted with the Yaksha server's 
portion of the ticket granting service's RSA private key. 
Notice that the user private key D, is not needed after the 
as-reg, and is never used again. Nor is the Yaksha server's 
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portion of this key, namely, Do, ever used again, thus 
effectively preventing any dictionary attacks against Dc. 
Yet, D,. and Dcy make their "presence felt" since they have 
been used to sign the temporary public key, and now the 
client can "sign/authenticate" messages with the 
corresponding temporary private key (which is a regular 
full size RSA key invulnerable to password guessing 
attacks), without danger of revealing D,.. Further, a 
message can be sent securely to the client c encrypted 
under E,.,luml), by any entity that sees the temporary 
certificate. 

4.4 The Yaksha tgs-req and tgs rep Messages 

In Kerberos the request to the ticket granting server takes 
the form: 

The client retrieves (unless we choose to include it in  the 
tgs-rep) the tgs long term certificate, uses (E,.,I,N,.J to 
recover (E,,s,NrJ and verifies that [[T,.,,,,slAD,,,,.l"D,,r is 
the signature on a valid T,:,, , .  The ticket contains K,.,IR,, 
which the client knows (and further it  has structure), so it 
can verify its validity. A compromised as cannot generate a 
valid Tc,rRs, signed by the tgs, since it does not know DIR,\. 

4.5 The Yaksha ap-req and ap-rep Messages 

The Kerberos tgs-req and up-req messages are 
fundamentally identical (the former being a special type of 
request to a server). Similarly the Yaksha up-req message 
is identical to the tgs-req message, and without further 
explanation we state the two messages: 

Kerberos:- tgs-req: s, time-exp, n, {Tc,lg,}Kl,T, { ~ s . . . } K , . , ~ ~ ,  
Kerberos:- up-req: {ts,ck, ...I Kc \ {T, ,}K, 

The only Yaksha modifications to this Kerberos message 
are to (a) attach the temporary certificate to the message, 
and (b) to take the encrypted TGT from the Yaksha as-rep 
message, [Tc,rRs]ADlg.n, and to sign it using the temporary 
private key, D,.,rumll. Part (a) allows the Yaksha f g s  server to 
retrieve (E,.,,emIl, Nc,lrmI)) and (b) guarantees that a 
compromised authentication server cannot generate a valid 
TGT for a "fake" client. The resulting message is: 

Yaksha:- tgs-req: s, time-exp, n,[ [T, rR,]ADr,,,lhDr rem/)! 

{ t ~  ...I K ,  I,,, [ [TEMP-CERT]"D,]"D,, 

The ticket granting server first retrieves the user's 
permanent certificate [Cert-c]AD,,l, recovers (E,,N,), uses 
this to recover the TEMP-CERT, uses the temporary 
public-key in the temporary certificate to retrieve 
[T, rq\]hDIR\,, and then uses its private key D,, and public 
key (EIR,,NrR,) to recover the ticket T,  
T, r ~ , l A D t ~ ' \ l A ~ l ~ \ l A ~ t s ~  

At this point the ticket granting service has authenticated 
the user, and it is tempting to use the Kerberos tgs-rep: 

Kerberos:. tgs-rep: {K,  \, time-exp, n, s ,... }K( r8\, {T' ,}K, 

almost unchanged, for instance, simply by replacing 
{T<,,,}K,\ with [Tc.,,,]"DA,.. But the problem is that mutual 
authentication is not achieved and a compromised as could 
spoof the client into believing it is talking to the tgs when it 
is not. So we make the return message contain proof of the 
tgsS authenticity. To avoid this we simply make the tgs 
complete the signature on [T,.,,R\]ADl,,s, message using DrRr 
and return the result to the client. so the tgs-rep message 
is: 

Yaksha:- tgs-rep: {K, ,, time-exp, 11, s ,... }K( rg,, [T, ,]"D,,, 

In Yaksha we do mandate mutual authentication, and want 
the server to prove its knowledge of its long term private 
key Ds. As in the tgs-rep message this is achieved by the 
server replying with the service ticket T,,,, with the 
signature completed, such that it  can be verified using its 
long term public-key. Consequently the up-rep messages 
are: 

Kerberos: ap-rep:{ts}K,., ~ 

Yaksha: up-rep: [IT, JAD,JAD, 

We have changed the tgs-rep and up-rep messages more 
than we may prefer, but the resultant mutual authentication, 
without having to trust the as or tgs respectively, justifies 
the change. 

4.6 The Yaksha sign-req and sign-rep Messages 

Kerberos does not perform signatures, so these two 
messages do not have a Kerberos counterpart. Rather these 
messages are essentially the signature protocol described in 
[CANE941 with a slight modification to remove a potential 
dictionary attack. The messages are: 

Yaksha: sign-req: c, [[H,ts]"D, , n]AD,,remll, [[TEMP- 
CERT]"D,, ti]"D, 

Yaksha: sign-rep: [ [ [ [ H ,  ~s]"D,]~D,.,],~]"E,,,,~,) 

We use the same temporary public-private key pair to 
perform mutual authentication and encryption between the 
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signer and the server. If this temporary key pair is only 
used for this exchange, then it  may be safe to assume that 
the temporary public-key (and the temporary certificate) is 
never made available to anyone but the two parties. Under 
this assumption, the message exchange will be simpler. 
However, we have chosen to be cautious, and hence our 
exchange is more complex. The user c signs a hash, H ,  
concatenated with a timestamp, ts, to add redundancy (in 
practice, a signature would have some well defined format 
and this would not be necessary) to the message. The client 
then takes this string, [H,ts]"D,., and concatenates it with a 
random number n to prevent dictionary attacks of the form 
[H,tsIAguess, and then signs again with D,.,,um,,. This results 
in [ [ H , ~ S ] " D , . , ~ ] ~ D , . , , ~ ~ , ,  The client sends this and the usual 
partially signed temporary certificate, [[TEMP-CERT]"D,, 
n]"D, to the Yaksha server. 

On receipt of the sign-req, The Yaksha server first unlocks 
the TEMP-CERT (just as in  the as-req message), and 
recovers the temporary public key. The successful recovery 
authenticates the client to the Yaksha server. It uses this 
public key to recover [H,ts]"D,. and n. The server can then 
recover [H, ts ] ,  by performing [[[H, ~S]"D,]~D,.,]"E,. The 
presence of a structured timestamp authenticates that this 
part of the message came from the client (we have to worry 
about attacks where pieces of messages may be valid, with 
other portions "pasted" in). 

The server then computes [[H, ts]"D,.]"D,, which is the 
regular RSA signature on the hash and time stamp. It then 
concatenates the signature with n and encrypts using the 
temporary public key. The client can recover the signature 
using the temporary private key, and then verify the 
authenticity of the signature using its long term public-key. 

5.0 Conclusions 

We wish to make several observations: 
1. Except for the up-rep message, almost all changes are 

restricted to either using modular exponentiation 
instead of DES, or requiring an additional message to 
be inserted. Importantly, the number of message 
rounds is kept identical. 
Given that we have the power of the RSA variant at 
hand, several of our choices may seem curiously sub- 
optimal. This results from our strong desire to retain 
several Kerberos structures and ideas, even if they are 
now somewhat redundant and sub-optimal. 
Extending Yaksha to encompass the full range of 
Kerberos functions as envisaged in [KOHL93], 
including cross-realm operations, is beyond the scope 
of this paper, but are a natural, if tedious, extension of 
the ideas contained here. 

2. 

3. 

4. Given the basic ideas here, countless variations are 
possible. It is not claimed that the Yaksha design 
described here is the "best", and we suspect that as the 
protocol (and software) design progresses the eventual 
Yaksha will look slightly different. 
There is little question that symmetric encryption is 
more efficient than any scheme using public-key 
cryptography. However, we believe that there is 
nothing particularly prohibitive about our designs and 
sensible engineering choices can alleviate any 
performance bottlenecks. For instance, generation of 
temporary public-private key pairs can be 
precomputed and placed in a queue-cache that is 
partially flushed at regular intervals. The Yaksha 
server itself will probably require RSA hardware, 
which is easily available, and the "capacity" of the 
server may not be high (requiring more servers). 
However, this may be a small price to pay when 
weighed against the potential havoc a catastrophic 
failure of a Kerberos database. 

5 .  
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