
Yaksha’ : Augmenting Kerberos with Public Key Cryptography

Center of Excellence for Electronic Commerce
Bell Atlantic

Silver Spring, MD 20904
Ravi.Ganesan @Bell-AtLCom

Abstract

The Kerberos authentication system is based on the trusted
3rd party Needham-Schroeder authentication protocol.
The system is one of the few industiy standards for
authentication systems and its use is becoming fairly
widespread. The system has some limitations, including the
fact that compromise of the on-line trusted 3rd party is
catastrophic and that the system is vulnerable to
dictionary attacks. Further, while the system provides for
authentication and key-exchange, it does not provide non-
repudiation (i.e. digital signature) services, as a result of
which an organization using Kerberos would have to
maintain a separate security infrastructure for the latter
function.

Ravi Ganesan

Department of Computer Science
The Johns Hopkins University

Baltimore, MD 21218
ganesan @ b1aze.cs.j hu.edu

Many of these limitations are traceable to the decision of
the Kerberos designers to solely use, freely available,
symmetric key cryptosystems. Using asymmetric, or public
key, cryptosystems in an authentication protocol would
prevent some of the shortcomings addressed here. Several
such protocols have been proposed and some have been
implemented. However, all these designs are either
completely different from the Kerberos system, or require
major changes to the basic system. Our goal in designing
Yaksha’ is different. Having observed the fairly tortuous
and time consuming process the Kerberos community has
wound through to finally arrive at what is a mature, and
from all appearances a fairly secure, standard, we are of
the firm conviction that any attempts to improve Kerberos
would do so with only minimal impact to the protocol and

’ In Greek mythology, Kerberos is the three headed dog that guards the
gates of Hades, “the land of the dead, underworld’, To guard something
more valuable, for instance, the gates of heaven, we need a Yaksha. In
Hindu mythology, Yakshas (Yakshini is the feminine), are ‘good’ demi-
gods who, among other things, guard the gates of heaven. Yakshas are
also extremely flexible and can transform themselves into any other form
e.g. birds, cows, and presumably, three headed dogs. :-)

the source tree. In this work we describe Yaksha, a new
approach to achieving these goals.

Yaksha uses as its building block an RSA variant
independently invented by Boyd [Boyd891 and by Ganesan
and Yacobi [Gane94], in which the RSA private key is split
into two portions. One portion becomes a user’s Yaksha
password, and the other the Yaksha server’s password for
that user. Using this simple but useful primitive we show
how we can blend the Kerberos system with a public key
infrastructure to create Yaksha, a more secure version of
Kerberos with minimal changes to the protocol.

KEYWORDS: Authentication, Authentication Protocols,
Dictionary Attacks, Digital Signatures, Kerberos, Key
Exchange, Non-Repudiation, Passwords, Yaksha

1.0 Motivation

The Kerberos authentication system [KOHL931 based on
the classic Needham-Schroeder authentication protocols
[NEED781 with extensions by Denning-Sacco [DENN78],
uses a trusted 3rd party model to perform authentication
and key exchange between entities in a networked
environment. Kerberos uses symmetric key cryptosystems
as a primitive, and initial implementations use the Data
Encryption Standard (DES) as an interoperability standard,
though any other symmetric encryption system can be used.
After close to a decade of effort, the Kerberos
authentication system is now a fairly mature standard
whose security properties have held up fairly well to
intense scrutiny. Further, it is finally the case that vendors
are delivering Kerberos as a supported product. It has also
been adopted as the basis for the security service by the
Open Software Foundation’s (OSF) Distributed Computing
Environment (DCE). Consequently, we expect

132
0-8186-7027-4/95 $4.00 0 1995 IEEE

Kerberos to be among the most widespread security
standards used in distributed systems over the next several
years.

Kerberos does have limitations, and among the more
serious ones are:

Compromise of the central trusted on-line Kerberos
server is catastrophic, since it retains long term user
secrets. Kerberos is vulnerable to password guessing
dictionary attacks.
Kerberos does not provide non-repudiation services
(i.e. digital signatures)

The first limitation is intrinsic to the Needham Schroeder
protocol when used with symmetric cryptosystems like
DES. The second problem is also a major issue since
experience suggests that password guessing attacks tend to
be far more common than most other forms of attacks -
they are simple and effective. Finally, Kerberos was
designed to provide authentication and key-exchange, and
hence it may be unfair to characterize its not providing
digital signatures as a “limitation”. However, most
organizations using Kerberos will also want to implement
digital signatures, and will have to maintain separate
security infrastructures for Kerberos and for digital
signatures - a significant cost.

A major reason for these limitations is that Kerberos does
not use asymmetric, or public key, cryptosystems. It is a
fairly straightforward exercise to create a paper design of
an authentication protocol that uses public-key
cryptography and avoids some of these limitations. And
with significantly more effort, one can design a full fledged
system with a public key infrastructure which achieves the
same goals as Kerberos without its associated limitations.
DEC’s SPX [TARD91] system is one such example. Our
motivation for this work begins from a different set of
constraints. Namely, we believe that the effort required to
get a multi-vendor supported standard authentication
system whose security properties have been widely
examined is probably the hardest part of implementing a
new system. For the most part, this effort has already been
exerted on behalf of Kerberos, and consequently we
believe any addition of public-key cryptography to
Kerberos must meet the following two constraints:

It should require minimal changes to the protocol as
defined in [KOHL93]. Specifically, analogous to
generational increments in the instruction set of a
microprocessor, the changes to the Kerberos protocol
should be incremental to increase the likelihood of
backward compatibility.
It should require minimal changes to the Kerberos
source tree, and again the changes should be primarily
in the form of additions.

These two constraints are driven by practical
considerations, but are difficult to meet. For instance, Kohl
[KOHL911 (as quoted in [SCHN94]) suggests that:
“Taking advantage of public-key cryptography would
require a complete reworking of the protocol“. We do not
believe this is necessary and this work describes Yaksha, a
new method of adding public-key cryptography to
Kerberos, that to a large extent meets the first constraint.
Further, we strongly suspect that our approach meets the
second constraint of minimizing changes to the source tree,
but this can only be proven when the system is built.

2.0 Relevant Prior Work

We first describe the relevant prior work that we use as
building blocks in our design and then also comment
briefly on other approaches to the same problem. Readers
familiar with the Kerberos messaging structure, public key
cryptography and RSA are urged to skip directly to Section
2.5

2.1 Kerberos: A Protocol Overview

For the sake of clarity, in this paper we will use the
“simplified” version of the Kerberos protocol described by
Neuman and Ts’o in [NEUM94]. The extension of our
ideas to the complete protocol, as described in [KOHL93],
is straightforward. Further, the Kerberos overview in this
section is based on [NEUM94], and for the sake of
consistency uses almost the same notation. The
fundamental message exchanges are shown below in
Figure- 1.

We now describe the messages in further detail. Message-
I , known as as-reg (request to authentication service)
consists of

as-req: c , f g s , time-exp, n

where c is the name of the client (user), rgs the name of the
ticket granting service for which the client is requesting a
ticket granting ticket T,,,,,. time-exp is the requested expiry
time of the ticket (typically eight hours) and n is a fresh
random number. This message is sent in the clear, and all
parts of it are visible to an eavesdropper. The
authentication server (as) responds with Message 2,

as-reg: {K‘ I , , , time-exp, n, ... /K , , {T,,,,,IK,,,

where K, ,,, is the session key to be shared between the
ticket granting server (tgs) and the user for the lifetime of
this ticket. Note that we are using the notation { M I K , to
denote the encryption of message M using a symmetric
encryption system, e.g. DES, using key K. Kc,,g5 and the

133

Authentication

Figure 1: Kerberos message exchange overview (adapted from [NEUM94]). In message 1 the user requests a
ticket granting ticket (TGT). the server creates such a ticket, looks up the user’s password from the Kerberos
database, encrypts the TGT with the password and sends it to the user in message 2. The user decrypts the TGT
with her password, and stores the TGT on her computer. Then, when she wants to access a service, she sends
message 3, which contains the TGT to the server, who verifies the TGT and sends her back, in message 4, a ticket
to access the server and a session key. In message 5 she presents the ticket to the server, which verifies it and also
recovers the same session key from it. If mutual authentication is required, the server, in message 6, sends back a
message encrypted with the session key.

134

other information is encrypted with K, which is the user’s
password (the long term secret which is shared with the
Kerberos server). Only a user who knows K, will be able to
decrypt this message to obtain Kc,fgs. This key Kc,rgs is also
embedded in the ticket Tc,fgsr which in the as-rep is
encrypted using Kfgs, a long term key known only to the as
and the tgs. After decrypting the first part of the message,
the user now stores the data received in the as-rep on the
local computer. The main purpose behind this is to avoid
storing the long term key K, on the computer where it may
be compromised. Rather, the key Kc,fgs is used in lieu of
K,. Since Kc,fgs is relatively short lived, the damage an
attacker can cause by learning this key is less.

It is worth observing that the as does not verify the identity
of the user before responding to a user’s as-reg with an
as-rep. Rather as relies on the fact that to be able to make
any use of the as-rep, the recipient must know K,. So an
attacker can actually get an as-rep from the as by sending
a fraudulent as-reg. The attacker can then take the portion
of the as-rep encrypted with K,, and attempt to decrypt by
taking guesses at K,. Since K , is typically a user selected
password, K, may well be a poor password, which the
attacker can guess. Even if this “vulnerability” is closed
(there is an option to do so in Version 5 of Kerberos), an
attacker can always eavesdrop on the network to obtain
information using which a password-guessing attack can be
mounted.

When the client wishes to obtain a ticket to access a server,
it sends to the tgs, Message 3,

This message consists of the name of the server, s, the
expiry time, time-exp, requested and the random number,
n, in cleartext. It also contains the encrypted ticket granting
ticket (Tc,rgs}Kfgs which was received by the client in the
as-rep message. Upon receipt of the message the tgs,
which knows K,,, can decrypt and recover Tc,rgs, which is a
valid ticket. In order to prevent a replay attack in which an
attacker might gain some benefit by re-sending a valid
/Tc,fgs)Kfgs at a later time, the tgs-req message also contains
an authenticator, which is a timestamp, ts, a check sum and
other data, all encrypted with the session key Kc,fgs. Since
this session key is embedded in the ticket Tc,rgs, which the
tgs has recovered, the tgs, can decrypt the authenticator
and verify the time stamp and check sum. By maintaining a
cache of recently received authenticators, the tgs can detect
replays.

Having verified the authenticity of the tgs-req, the tgs
responds with Message 4,

tgs-rep: (K,,,, time-exp, n, s,...lKc,fgs, lT,.JK,

This message is very similar in structure and purpose to the
as-rep, message:. The first part consists of a session key,
expiry time, etc., encrypted with Kc,rgs. The client can
decrypt this to recover the session key and other
information. The second portion is a ticket to access the
server, encrypted with the long term key shared by the
server and the tgs. The client now constructs Message 5
and sends it to the server,

This message is similar to the tgs-reg, in that it contains an
encrypted tickel. (T,,,)K, which the server can use to
recover T , , , which authenticates the client to the server
and, among other information, contains the session key
Kc,,y. The server then uses K , , to decrypt the first part of the
message, the authenticator, which has a time-stamp, ts, a
check-sum, ck, etc.

Having verified i:he authenticity of the client, the client and
server are ready for communication. However, in some
cases the client may request mutual authentication, in
which case the server must first respond with Message 6,

ap-rep: ltslK,.,

which is basicidly proof that the server successfully
recovered K,,, from the ticket Tc,s, which means the server
knew K,, which in turn is proof of authenticity of the
server.

The actual protocol has a number of options and is more
complex, but the basic structure is defined by these six
messages. The interested reader is referred to [KOHL931
for more details.

2.2 Public-Key (Asymmetric) Cryptosystems

This subsection provides a quick overview of public-key
cryptography. In public-key systems each entity, i , has a
private key, Pi, ,which is known only to the entity, and a
public key, Ui, which is assumed to be publicly known.
The system has the special property that once a message is
encrypted with a user‘s public-key, it can only be decrypted
using that user’s private-key, and conversely, if a message
is encrypted with a user‘s private-key, it can only be
decrypted using that user’s public-key (in some systems
only operations i n one direction are permissible). So, if the
sender wishes to send a message to receiver, i , then the
sender “looks-up” i’s public key, U , and computes
C=E(M,U,) and sends C to i. i can recover M using its
private-key, Pi, by computing M=D(C, Pi). An adversary
who makes a copy of C, but does not have Pi, cannot
recover M. Publiz-key cryptosystems are not however very

135

efficient (e.g. RSA is roughly 1000 times slower than DES
when both are implemented in hardware, and 100 times
slower when both are implemented in software
[SCHN941), and typically cannot be used for large
messages.

Public-key cryptosystems can also be used for digital
signatures. The signer, i, computes S=E(M,Pi) and sends
(M,S) to the recipient. The recipient "looks-up" i's public-
key, Ui, and then checks to see if D(S,Ui) is equal to M. If
so then the recipient is convinced that i signed the
message, since computing an S, such that M=D(S,Ui),
requires knowledge o f , i's private key which only i knows.

2.3 Review of the RSA Cryptosystem

RSA[RSA78] is a public-key based cryptosystem that is
believed to be very difficult to break. In the RSA system
the pair (ei , ni) , is user i's public-key and di is the user's

private key. Here ni = p X 4 , where p and are large

primes, and ei Xdi = lmod@(ni) , where

@(ni) = (p - l)(q - 1) is the Euler Toitient function
which returns the number of positive numbers less than ni,
that are relatively prime to n, . To encrypt a message being

sent to user i, user j will compute C = Me' modni and

send c to i. i can then perform M Cd' modni to

recover M . The RSA based signature of user i on a

message, M , is S Mdi modn,. . The recipient of the

message j , can perform M e S" modn, , to verify the
signature of i on M . Note that in RSA encryption and
signatures can be combined.

2.4 Review of Public Key Certificates

Since a recipient of a message must know the sender's
public-key, a method must be provided to securely provide
this information to the recipient. One common method
[KENT931 is the concept of certificates. A certificate is
basically a binding between an entity and its public key, as
vouched for by some authority. So a certificate in a RSA
based infrastructure could contain Cert = { i ,e i ,ni} . The
certificate is signed by some trusted third party called a
Certificate Authority (CA). So when i sends j a signed
message S = Mdi modni, it is accompanied by

(Cert)dcA mod ncA . j can recover i's public key from the

certificate using (ecA ,n,) , the Certificate Authority's
public-key which is assumed to be universally available.
In an informal sense, the degree of trust in the off-line

Certificate Authority is (arguably) much less than the trust
placed in an on-line Kerberos server.

2.5 Review of Boyd's RSA Variation

Boyd [Boyd891 introduced an interesting RSA variation
for "digital multisignatures". In his scheme the RSA
private key d is split into multiple portions d,, d,.. . . . d, ,
where d, X d ,.... d, ~d mod@(n) . The ith portion

di is given to the ith user. The users can then jointly sign a

message . For example if there are two users (k = 2),
then the first user computes SI = Md' modn , and the
second user completes the signature by computing
S SIdZ modn . The resulting signature is identical to
one signed by the regular RSA private key (i.e.

S , = M d modn) and can hence be verified, in one
operation, using the regular public-key.

For simplicity of notation we are dropping the "mod n"
from our explanation for the rest of this paper, but all
exponentiations are modulo the appropriate modulus.
For instance, M d l , refers to M dl mod ni .

2.6 Review of Ganesan-Yacobi RSA Variant

Ganesan and Yacobi [GANE94] reinvented Boyd's system,
and made four significant additional contributions. All
their results apply to the two party case, but are believed to
be generalizable. The four results are (using the same
notation as in our description of Boyd's scheme):

They prove mathematically that breaking the joint
signature system is equivalent to breaking RSA. The
attacker can be an active/passive eavesdropper or one
of the participants. They assume that key generation is
conducted by a trusted 3rd party, like a tamper proof
chip, and the factorization of the RSA modulus and
@(n) are discarded after key generation and not
known to any of the participants.
They describe the following key exchange protocol

User 1 sends x ' to User 2. User 2 recovers

x = ((21 > d 2 1'. Similarly User 2 transmits ydz to
User 1, who recovers y , The users can use as the

session key some function of x and y (e.g. x @ y).
Ganesan and Yacobi proved mathematically that
breaking this key exchange protocol is equivalent to

d

136

breaking RSA. The attacker can be an active/passive
eavesdropper or one of the participants.
Next, they introduce the concept where one of the two
users is actually a central server which maintains one
portion of every user's private key. In order to sign a
message the user must interact with this server (which
they prove, cannot impersonate the user). Having to
interact with such a central server to sign runs
somewhat counter to prevailing conventional wisdom.
However, it turns out to have several important
practical advantages including instant revocation
(without difficult to maintain Certificate Revocation
Lists), a central point for audit and as discussed below,
a method of providing digital signatures in an era
where smart cards are not yet ubiquitous.
Ganesan and Yacobi proved mathematically that even
if one of the two portions, d, and d 2 , of the private
key, is short, say 80 bits, then for an active or passive
eavesdropper to break the system is still as difficult as
breaking RSA. As a consequence, a digital signature
infrastructure can be built where users who remember
short (say ten characters) passwords, can interact with
the central server to create RSA signatures. The
signatures created are indistinguishable from those
created using a full size RSA key stored on a smart-
card. They conjectured, but do not prove, that the
system is still secure from a malicious central server
even when the user keys are short. Michael Weiner
[WEIN941 illustrated an attack where a malicious
server can mount an attack that runs in roughly

o (m steps, where 1 is the number of bits in the
short user password. So for instance if a security factor
of 240 is required, than the user password should be
80 bits long. Again, this is an attack mounted by a
malicious server, not an eavesdropper.

In I . and 2. above we observe that although the goals are
signatures and key-exchange respectively, authentication is
a natural by-product. Ganesan and Yacobi suggest that this
system is a simpler alternative to Bellovin and Merrit's
Encrypted Key Exchange (EKE) [BELL92](the RSA
version) and unlike EKE, does not require the two parties
to share a common secret key.

Yaksha uses results l . , 3. and 4. to envisage an
authentication system, in which the server, instead of
sharing a common symmetric key with each user, retains a
portion of each user's private. RSA key. Several
authentication protocols can be created using this basic
idea. In this paper we restrict ourselves to illustrating how
we can modify Kerberos using these results to arrive at a
Kerberos-like protocol.

2.7 Other Potential Approaches to a Better Kerberos

The SPX system [TARD91] is a full-fledged public-key
based authentication system which does not require a
trusted on-line server. It's protocol is sufficiently different
from Kerberos to make integration of these systems require
a complete reworking of the Kerberos protocol. Bellovin
and Merrit's Encrypted Key Exchange [BELL921 can
potentially be integrated with Kerberos to prevent
dictionary attacks. However, their multi-pass protocol
would require very significant changes to the Kerberos
system. A nice feature of EKE is that the authors show how
it can be implemented using the RSA, Diffie-Hellman or El
Gama1 public key cryptosystems. Our system however, to
our knowledge, works only with RSA. Also, unlike our
system, EKE assumes that the participants share a common
long term secret. Finally, both these systems, like Yaksha,
generate public-private key pairs on the fly, but all three
use these dynamic keys in totally different ways.

The Sesame project [MCM094] also integrates public-key
cryptography with Kerberos, but the focus there has been
on adding public key cryptography to the inter-realm
portions of Kerberos, to make those aspects more secure.
Our approach can be used to meet their objectives.

3.0 The Yaksha Design Goals

We now discuss our design goals in more detail.

3.1 Removing Vulnerability to Catastrophic Failure

The Kerberos system shares a permanent secret with every
user and service. Compromise of this database is
catastrophic. Our most important design goal is to alleviate
this problem. Practically speaking, compromise of the
server in any server-centric design will result in some
damage. We believe that any such compromise will be
short lived (for example, if the database is surreptitiously
copied, then fraudulent use of services will at some point
be detected), and hence our goal is to minimize the damage
that can be caused in the interval. Specifically:

Compromise of the server should not allow the attacker to
impersonate a client to the server

or vice versa.

Yaksha meets this goal, with the caveat that (in the version
of our system where the user has a short private key) an
attacker who compromises the server (unlike an
eavesdropper) can mount an expensive dictionary attack
against the user (see Section 3.2).

137

3.2 Removing Vulnerability to Dictionary Attacks

Dictionary attacks are a common form of attack, and it is
well known that many systems (e.g. UNIX [MORR79] or
Kerberos) are vulnerable [KARN891 to this attack.
However, all dictionary attacks are not alike, and it is
worth considering a taxonomy of such attacks. There are
four parameters to a dictionary attack:
1 . The known plaintext, S, which can take two forms:

0 a string S1 which is known in advance to the
attacker. An example of SI is a string of
zeroes.
a string S2 which is not known to the attacker
in advance, but "he'll know it when he sees
it". An example of S2 would be any string
with some form of predictable redundancy,
for instance a time stamp. Another example
would be if S2 were a number with particular,
easily tested, mathematical properties, for
instance a prime, or a non-prime with no
small factors.

2 . The ciphertext C, typically of the form C=F(S,k)
where k is the password being sought.

3. The password space P being guessed consists of N
passwords. The attacker will take guesses pI , p2, ...,pN,
till he finds a pi which is equal to k.
The function F and its inverse (assuming one exists),
which are typically public information. It is important
to draw a distinction between the cases when F is a
symmetric encryption system like DES, and when F is
an RSA function of modular exponentiation.

4.

These four parameters yield at least two distinct forms of
dictionary attacks:

S 1 type attacks. Here the attacker typically computes
F(Sl,p,) (or perhaps F'(SI,p,)) for every p I in P until
he discovers a pI where, F(SI,p,) = C (or F
'(Sl,p,)=C). This is the most dangerous form of
attack since the attacker can (a) Precompute the
F(Sl,p,) for all or many p I and (b) The attacker can
amortize his attack against several users. UNIX is
vulnerable to such attacks.
S2 type attacks. Here the attacker is typically
computing (C,pJ and is hoping to find an S2 which he
can recognize. Here the attacker cannot start
computations before he captures C. Further, since C
will be different for each instance, no amortizations of
attack are possible. The Kerberos system is vulnerable
to this form of attack.

Our design goal is a system that is not vulnerable to either
form of attack from an eavesdropper.

As mentioned earlier, in the event of server compromise,
AND, the use of short keys by the user, our system is
vulnerable to the second form of dictionary attack.
However, since the attacker would have to use modular
exponentiation as the function F, the resulting attack will
be far slower than a dictionary attack against DES, and
further, the attack cannot be amortized.

3.3 Minimize Protocol Changes

We have an extremely minimalistic approach to any
protocol modifications. Specifically:

We do not want additional "rounds" to any protocol
exchange. We constrain ourselves to the basic six
messages described earlier.
We do not want to change any important structures,
e.g. the structure of the tickets.
We will permit additional structures to be added to the
messages, but restrict these to the barest minimum to
meet our security goals.

0

0

For the most part Yaksha achieves these objectives. The
most significant changes we are willing to make are:

assuming the existence of an off-line public-key
Certificate Authority.

0 we add certificates as additional strings to some of the
messages.
most of our changes are in the way encryption is
performed. For instance, instead of a DES encryption
with a user's DES key, we may encrypt using the user's
RSA private key. Observe that such changes are NOT
protocol changes, since the protocol does NOT specify
the kind of cryptosystem to be used.

We believe that these minimal protocol changes will result
in changes to the source tree being correspondingly small.

3.4 Upward Compatible With Smart Cards

We expect Yaksha to be deployed in environments that
today do not have smart-cards, but which within five years,
will have significant smart card deployments.
Consequently, the design should be seamlessly upward
compatible, and be able to take advantage of, smart cards.
As we mentioned earlier, we see Yaksha being used with
short user private keys (passwords) in the near term, and
migrating to full length RSA private keys as smart cards
become ubiquitous.

3.5 Reuse Authentication Infrastructure for Digital
Signatures

Before describing this design goal, we wish to point out
that the entire Yaksha design can be viewed independent of

138

this design requirement, and the way we meet it. The
design goal is that the authentication and key-exchange
infrastructure for Yaksha be reused for digital signatures.
While theoretically this may not seem important, in
practice it would be expensive for an organization to have
to maintain two parallel sets of security infrastructures. By
"reusing infrastructure" we refer specifically to three
components:
0 The user private secret used for authentication should

also be used for digital signatures.
0 Any certificate scheme used for authentication should

also be used for digital signatures.
0 The secure database be common

Observe that the last requirement refers to the use of digital
signatures in an environment where interaction with a
central server is essential. Yaksha meets these
requirements, and satisfies the digital signature
requirements by the addition of another two messages to
the basic protocol.

We note, in passing, that one reason for our being
enamored with central servers has to do with a key escrow
system we have developed [GANE94b], again using the
Ganesan-Yacobi scheme as a building block. In this system
a central server, which does not know user private secrets,
performs key exchange between two parties and upon
authenticated request from authorities, reveals the session
key for a particular session. Yaksha, like Kerberos, can be
easily modified to perform the same function, since both
generate session-keys. Unlike Kerberos, Yaksha does not
have the ability to compromise a user's long term private
key - a desirable property. More discussion on key-escrow
is beyond the scope of this paper, but we observe that our
system allows us to reuse the same infrastructure for
authentication, digital signatures and key-escrow, a
significant saving.

4.0 Yaksha

We are now ready to describe the basic Yaksha protocol.
For each step of the protocol, we also reproduce the
equivalent Kerberos step so that the differences are
obvious. We shall explain the notation as we describe the
protocol, but note now that, like in our Kerberos overview,
(MessugelK, means the Message is encrypted using a
symmetric cryptosystem like DES using key K,. When we
say, [MessageIAX we mean the RSA modular
exponentiation operator with the corresponding modulus N ,

i.e. [Message]x modN. Further, [Cerf-c]"D,,, is the
public key certificate for user c, signed by the certificate
authority, ca.

4.1 Initial key Creation

How initial keys are created in any public-key
cryptosystem, is largely a question of policy. e.g. should
the certifying authority also create keys? For the purposes
of this paper, i t suffices to present one practical scheme,
and assume that the specific method is independent of the
Yaksha protocol and hence can be performed in any
desired fashion.

We envisage that an organization's Security Department,
perhaps the same organization that issues Photo-IDS, has a
terminal connected to a secure computer (e.g. a tamper
proof chip). A user walks up to this terminal, enters her
name, etc. This information is certified by a security
officer. The computer creates an RSA public-private key
pair (E,N,D), prompts the user for a password, which
becomes D,. the user C I S portion of the RSA private key D .
The computer computes Dcy which is the Yaksha server's
portion of that user's RSA key. If the computer is also the
certifying authority, it computes [c, E,.,N,.IADc, as that user's
certificate (we are of-course greatly simplifying the
complex structure [KENT931 an actual certificate would
take, since those details are orthogonal to the discussion
here). The computer can then transfer Dry and the
certificate to the Yaksha server using a secure channel (for
instance by encrypting with the Yaksha server's public key
(Ey,NJ), Finally, once smart cards are ubiquitous, the user-
password may become irrelevant and the computer can
download the user's (long) private key directly to his smart
card.

We reiterate that no particular method of key generation is
critical to the functioning of Yaksha, and the above is only
meant to be one possible scenario. We do note that we
expect that in Yaksha the user private key will be more
long-lived than in Kerberos. Since Yaksha is not
vulnerable to some of the attacks Kerberos is vulnerable to,
we do not see this as a problem, and from a user
perspective see it as beneficial.

At the end of this process for every user/service, there
exists:

a private portion D, known only to the
user/service/en ti ty .
the Yaksha server has a private portion D,, for every
user/service/entity .
certificates exist on the Yaksha server and possibly on
other services, like a name service, of the form [c, E(,
N , IAD,,,.
everybody knows (EC<!,NL[,) the certifying authority's
public key.

0

139

All other intermediate key generation information has been
destroyed (hopefully within the safe confines of the key
generation tamper proof chip).

4.2 Message Structure Overview

In Yaksha we desire that to authenticate itself to the
Yaksha server, the client reveal knowledge of D,. (which is
of-course completely different from revealing D,. itself) to
the Yaksha server, and that the Yaksha server reveal
knowledge of Dcy to the client. When a service receives a
ticket from a client it requires proof that the Yaksha server
has vouched for the ticket (like in Kerberos), and further,
(unlike in Kerberos) requires proof that the client has
requested the ticket. i.e. i t trusts neither the client nor the
server individually, but trusts the message if both vouch for
it. Similarly, the mutual authentication response to the
client should require a message effectively vouched for by
both the service and the Yaksha service.

Like in Kerberos, we do not want to store the user's
private-key D,. on the computer for more than the barest
minimum time. Hence we use a temporary RSA private-
public key pair, which is generated on the fly, and then
have the client and the server collaborate to sign the public
portion of this temporary key to create a temporary
certificate that is valid for, say, eight hours. Note, that the
authenticity of this temporary pair is verified using the long
term public-key. Further, the Yaksha server never sees the
private-key portion of the temporary pair.

To summarize:
An entity's secrets are known only to the
entity and no one else.
No one party (the client or Yaksha) can spoof
the server, without collaborating with the
other.
Similarly neither the server nor Yaksha can
spoof the client individually.
A user's long term private secret is not stored
on any computer for any lengthy period.
Instead this long term private key is used in
conjunction with the corresponding Yaksha
key for that user to sign a certificate
consisting of a temporary public key.

0

Somewhat surprisingly, all of the above can be achieved
with very minimal changes to the protocol. We do assume,
that clients and servers have an easy method of retrieving
certificates, perhaps from a name service. Alternately, the
appropriate certificates could be attached to messages from
the Yaksha server.

4.3 The Yaksha as-req and as-rep messages

In Kerberos the initial as-reg message is:

Kerberos:- as-req: c, tgs, time-exp, n

The corresponding Yaksha message is:

Yaksha:- as-reg: c, tgs, time-exp,
[[TEMP-CERT]"Dc, nIADc

Here TEMP-CERT contains (c, E,.,rrm,,, Nc,reml,. expiry-time,
etc.) where (Ec,,?,,,/,, Nc,rem,,) is the public portion of the
temporary RSA private-public key pair which the client c
generated, and expiry-time, is the interval for which it is
valid. The TEMP-CERT is "signed" with the user's portion
of his long term private key, D,.. This structure is then
concatenated with a random string n, and again
"encrypted" with D,.. This prevents an attacker who later
sees TEMP-CERT, from seeing [TEMP-CERT]"D, and
mounting a dictionary attack by taking guesses at D,. and
checking if [TEMP-CERT]"guess = [TEMP-CERT]"D,.

Let us denote [[TEMP-CERTJAD,, n]"D, by Y. The
Yaksha server performs [[Y]"D, ,]"Ecj] to recover
Z=[TEMP-CERT]AD, and n. The server recovers the

performing
[[Z]^D, ,]^E,]= TEMP-CERT. Observe that in successfully
recovering a valid TEMP-CERT, the Yaksha server has
authenticated the client. The server then completes the
signature on the temporary certificate by performing
[ZI"D<,.

temporary certificate by

At this point in Kerberos the reply to the client is:

Kerberos :- as-rep: {Kc,rR.r, time-exp, n, . . . /Kc, { Tc,rg,sJKrgs

The Yaksha message is:

Yaksha:- as-rep:[K, rg,, time-exp, n,...]"E,,,,,,,
[T-c,tg~]"Dr~,,, [[TEMP-CERT]"D,]"D,,

Observe that the first two components of the Kerberos and
Yaksha messages are identical, expect that the encryptions
are performed using modular exponentiation and using
different keys. The third component of the Yaksha as-rep
is basically a certificate signed by the client and the Yaksha
server verifying the authenticity of the temporary public-
private key pair. The client can "decrypt" the first part of
the message using D,.,reml, which only it knows, to recover
the usual Kerberos information. The second portion is the
ticket granting ticket encrypted with the Yaksha server's
portion of the ticket granting service's RSA private key.
Notice that the user private key D, is not needed after the
as-reg, and is never used again. Nor is the Yaksha server's

140

portion of this key, namely, Do, ever used again, thus
effectively preventing any dictionary attacks against Dc.
Yet, D,. and Dcy make their "presence felt" since they have
been used to sign the temporary public key, and now the
client can "sign/authenticate" messages with the
corresponding temporary private key (which is a regular
full size RSA key invulnerable to password guessing
attacks), without danger of revealing D,.. Further, a
message can be sent securely to the client c encrypted
under E,.,luml), by any entity that sees the temporary
certificate.

4.4 The Yaksha tgs-req and tgs rep Messages

In Kerberos the request to the ticket granting server takes
the form:

The client retrieves (unless we choose to include it in the
tgs-rep) the tgs long term certificate, uses (E,.,I,N,.J to
recover (E,,s,NrJ and verifies that [[T,.,,,,slAD,,,,.l"D,,r is
the signature on a valid T,:,, , . The ticket contains K,.,IR,,
which the client knows (and further it has structure), so it
can verify its validity. A compromised as cannot generate a
valid Tc,rRs, signed by the tgs, since it does not know DIR,\.

4.5 The Yaksha ap-req and ap-rep Messages

The Kerberos tgs-req and up-req messages are
fundamentally identical (the former being a special type of
request to a server). Similarly the Yaksha up-req message
is identical to the tgs-req message, and without further
explanation we state the two messages:

Kerberos:- tgs-req: s, time-exp, n, {Tc,lg,}Kl,T, { ~ s . . . } K , . , ~ ~ ,
Kerberos:- up-req: {ts,ck, ...I Kc \ {T, ,}K,

The only Yaksha modifications to this Kerberos message
are to (a) attach the temporary certificate to the message,
and (b) to take the encrypted TGT from the Yaksha as-rep
message, [Tc,rRs]ADlg.n, and to sign it using the temporary
private key, D,.,rumll. Part (a) allows the Yaksha f g s server to
retrieve (E,.,,emIl, Nc,lrmI)) and (b) guarantees that a
compromised authentication server cannot generate a valid
TGT for a "fake" client. The resulting message is:

Yaksha:- tgs-req: s, time-exp, n,[[T, rR,]ADr,,,lhDr rem/)!

{ t ~ ...I K , I,,, [[TEMP-CERT]"D,]"D,,

The ticket granting server first retrieves the user's
permanent certificate [Cert-c]AD,,l, recovers (E,,N,), uses
this to recover the TEMP-CERT, uses the temporary
public-key in the temporary certificate to retrieve
[T, rq\]hDIR\,, and then uses its private key D,, and public
key (EIR,,NrR,) to recover the ticket T,
T, r ~ , l A D t ~ ' \ l A ~ l ~ \ l A ~ t s ~

At this point the ticket granting service has authenticated
the user, and it is tempting to use the Kerberos tgs-rep:

Kerberos:. tgs-rep: {K, \, time-exp, n, s ,... }K(r8\, {T' ,}K,

almost unchanged, for instance, simply by replacing
{T<,,,}K,\ with [Tc.,,,]"DA,.. But the problem is that mutual
authentication is not achieved and a compromised as could
spoof the client into believing it is talking to the tgs when it
is not. So we make the return message contain proof of the
tgsS authenticity. To avoid this we simply make the tgs
complete the signature on [T,.,,R\]ADl,,s, message using DrRr
and return the result to the client. so the tgs-rep message
is:

Yaksha:- tgs-rep: {K, ,, time-exp, 11, s ,... }K(rg,, [T, ,]"D,,,

In Yaksha we do mandate mutual authentication, and want
the server to prove its knowledge of its long term private
key Ds. As in the tgs-rep message this is achieved by the
server replying with the service ticket T,,,, with the
signature completed, such that it can be verified using its
long term public-key. Consequently the up-rep messages
are:

Kerberos: ap-rep:{ts}K,., ~

Yaksha: up-rep: [IT, JAD,JAD,

We have changed the tgs-rep and up-rep messages more
than we may prefer, but the resultant mutual authentication,
without having to trust the as or tgs respectively, justifies
the change.

4.6 The Yaksha sign-req and sign-rep Messages

Kerberos does not perform signatures, so these two
messages do not have a Kerberos counterpart. Rather these
messages are essentially the signature protocol described in
[CANE941 with a slight modification to remove a potential
dictionary attack. The messages are:

Yaksha: sign-req: c, [[H,ts]"D, , n]AD,,remll, [[TEMP-
CERT]"D,, ti]"D,

Yaksha: sign-rep: [[[[H , ~s]"D,]~D,.,],~]"E,,,,~,)

We use the same temporary public-private key pair to
perform mutual authentication and encryption between the

141

signer and the server. If this temporary key pair is only
used for this exchange, then it may be safe to assume that
the temporary public-key (and the temporary certificate) is
never made available to anyone but the two parties. Under
this assumption, the message exchange will be simpler.
However, we have chosen to be cautious, and hence our
exchange is more complex. The user c signs a hash, H ,
concatenated with a timestamp, ts, to add redundancy (in
practice, a signature would have some well defined format
and this would not be necessary) to the message. The client
then takes this string, [H,ts]"D,., and concatenates it with a
random number n to prevent dictionary attacks of the form
[H,tsIAguess, and then signs again with D,.,,um,,. This results
in [[H , ~ S] " D , . , ~] ~ D , . , , ~ ~ , , The client sends this and the usual
partially signed temporary certificate, [[TEMP-CERT]"D,,
n]"D, to the Yaksha server.

On receipt of the sign-req, The Yaksha server first unlocks
the TEMP-CERT (just as in the as-req message), and
recovers the temporary public key. The successful recovery
authenticates the client to the Yaksha server. It uses this
public key to recover [H,ts]"D,. and n. The server can then
recover [H, ts] , by performing [[[H, ~S]"D,]~D,.,]"E,. The
presence of a structured timestamp authenticates that this
part of the message came from the client (we have to worry
about attacks where pieces of messages may be valid, with
other portions "pasted" in).

The server then computes [[H, ts]"D,.]"D,, which is the
regular RSA signature on the hash and time stamp. It then
concatenates the signature with n and encrypts using the
temporary public key. The client can recover the signature
using the temporary private key, and then verify the
authenticity of the signature using its long term public-key.

5.0 Conclusions

We wish to make several observations:
1. Except for the up-rep message, almost all changes are

restricted to either using modular exponentiation
instead of DES, or requiring an additional message to
be inserted. Importantly, the number of message
rounds is kept identical.
Given that we have the power of the RSA variant at
hand, several of our choices may seem curiously sub-
optimal. This results from our strong desire to retain
several Kerberos structures and ideas, even if they are
now somewhat redundant and sub-optimal.
Extending Yaksha to encompass the full range of
Kerberos functions as envisaged in [KOHL93],
including cross-realm operations, is beyond the scope
of this paper, but are a natural, if tedious, extension of
the ideas contained here.

2.

3.

4. Given the basic ideas here, countless variations are
possible. It is not claimed that the Yaksha design
described here is the "best", and we suspect that as the
protocol (and software) design progresses the eventual
Yaksha will look slightly different.
There is little question that symmetric encryption is
more efficient than any scheme using public-key
cryptography. However, we believe that there is
nothing particularly prohibitive about our designs and
sensible engineering choices can alleviate any
performance bottlenecks. For instance, generation of
temporary public-private key pairs can be
precomputed and placed in a queue-cache that is
partially flushed at regular intervals. The Yaksha
server itself will probably require RSA hardware,
which is easily available, and the "capacity" of the
server may not be high (requiring more servers).
However, this may be a small price to pay when
weighed against the potential havoc a catastrophic
failure of a Kerberos database.

5 .

6.0 Acknowledgments

I would like to thank the anonymous referees for providing
useful feedback. I am extremely grateful to Raymond Pyle
and Rick Austin for their careful and insightful reviews.
The name Yaksha is due to Meenakshi and Natesan
Ganesan, with Satish Krishnamurthy pointing out that
Yakshas have the power to mutate into any other creatures
including three headed dogs. Finally, my special thanks to
Karuna Ganesan for spending many hours improving the
'readability' of a notation heavy paper, which for my sake,
she hopes someone somewhere can comprehend!

7.0 References
BELL921

Boyd891

[CANE941

[GANE94b]

Bellovin, S. M. and M. Merritt,
"Encrypted Key Exchange: Password-
Based Protocols Secure Against Dictionary
Attacks", Proceedings of the 1992 IEEE
Computer Society Conference on Research
in Security and Privacy, 1992.

Boyd, C., "Digital Multisignatures",
Cryptography and Coding, Clarendon
Press, Oxford 1989, H.J. Beker and F.C.
Piper, Ed.

Ganesan R., and Y. Yacobi, "A Secure
Joint Signature and Key Exchange
System", Bellcore Tee hn ica 1
Memorandum, TM-ARH-, 1994.

Ganesan, R. "A New Key Escrow
System", In publication process.

142

[KARN89]

[KENT931

[KOHL9 1]

[KOHL931

[MCM094]

[MORR79]

[NEED781

[NEW941

[RSA7 81

[SCHN94]

[TARD91]

[WEIN941

Karn, P.R. and D.C. Feldmeier, "UNIX
password security - Ten years later",
Advance in Cryptology - CRYPT0 89. G.
Brassard (Ed.) Lecture Notes in Computer
Science, Springer- Verlag. 1990.

Kent, S., "Privacy Enhancement for
Internet Electronic Mail: Part 11: certificate
Based Key Management", INTERNET
RFC 1422, Feb. 1993.

Kohl, J. T., "The Evolution of the
Kerberos Authentication Service",
EurOpen Conference Proceedings, May
1991.

Kohl, J. T. and B.C. Neuman, "The
Kerberos Network Authentication
Service", INTERNET RFC 1510,
September 1993.

McMohan, P., "SESAME V2 Public Key
and Authorization Extensions to
Kerberos", Proceedings of the INTERNET
Society Symposium on Network and
Distributed System Security, 1994

Morris, R. and K. Thompson. "Password
Security: A Case History",
Communications of the ACM, 22(11).
November 1979.

Needham, R. M., and M. D. Schroeder,
"Using Encryption for Authentication in
Large networks of Computers",
Communications of the ACM, v. 21,n 12,
Dec. 1978.

Neuman, B. C., and T. Ts'o, "Kerberos: An
Authentication Service for Computer
Networks", IEEE Communications,
September 1994.

Rivest, R., A. Shamir and L. Adelman,
"On Digital Signatures and Public-Key
Cryptography", Communications of the
ACM, v. 27, n. 7, July 1978.

Schneier, B ., Applied Cryptography:
Protocols, Algorithms and Source Code in
C, John Wiley and Sons, New York, 1994.

Tardo, J., and K. Alagappan, "SPX:
Global Authentication Using Public-Key
Certificates", Proceedings of the 1991
IEEE Symposium on Research in Security
and Privacy, 199 1.

Weiner, M. Personal Communication,
1994.

143

