Heralding future reusable security systems,

The Yaksha Security squ”

the Yaksha security infrastructure provides
multiple security functions—authentication,
digital signatures, key exchange, and key escrow.

~Yaksha

Securilty System

emerging information infrastructure, it is important
that we look for similar flexibility. The Yaksha securi-
ty system is a security technology [4, 5] capable of
reusing a single security infrastructure to perform
various security functions—authentication, key
exchange, digital signatures, and key escrow. This
article describes how the Yaksha security system can
be used for key escrow.

[t 1s commonly accepted that encrypted communi-
catuons and data storage make up an essential com-
ponent of our emerging information infrastructure.
Somewhat more controversial 1s the concept that cer-
tain third parties—other than those communicating
or storing information—may have a legitimate right to
seek access to the information without the active

Ravr Ganesan

Hindu methology, Yakshas are “good” demigods who guard the
't gates of heaven. They are extremely flexible and have the power to
transform themselves into other forms, such as birds and tigers. In

designing the security infrastructure that will guard the gates to our

cooperation of the participants. Clearly, encrypting
information being communicated or stored could
put the third parties at a significant disadvantage.
Techniques for providing secure communications
and storage with intentional backdoors that allow
legitimate third parties access to the information fall
into the broad category of what may be described as
key escrow systems. Throughout this article, we use the
term authority synonymously with legitimate third party.

When the authority is the government and the par-
tcipants are citizens, the entire concept is fairly contro-
versial, as has been well documented in the pages of this
magazine [2] and other publications. In this context,
the system that dominates the discussion is the so-called
Escrow Encryption Standard or Clipper System [3]. An

COMMUNICATIONS OF THE acm \aoch 1996/ Vol 49, No. 4

analogous (and in our opinion, less controversial) situa-
tion exists when the information is owned by an organiza-
tion or corporation, the participants are employees, and
the third parties are legitimate organizational or corpo-
rate authorities. The term “corporate key escrow” is
loosely used to describe this situation.

Several key escrow systems have been proposed in re-
cent years, and in this issue of Communications, Denning
and Branstad [3] present an excellent summary and tax-
onomy of these various systems. Each of these systems
approaches the problem using a different underlying
technical approach, as well as from what can be described
as a different philosophical stance. The Yaksha system has
its own philosophical stance, beginning with a different set
of assumptions about the requirements than many of the
other systems. The article begins with a summary of key
requirements driving the design of the system, provides
some necessary background, describes the general system,
shows example applications for telephony, email, and
data storage, and finally summarizes our conclusions.

Requirements
Two commonly accepted requirements essentially define
key escrow systems:

® The system should provide an authority the ability to
access encrypted information without the cooperation
of the partictpants.

¢ The “backdoor” inherent in the system should not be
usable by an unauthorized third party.

Although we view the requirements discussed in the fol-
lowing paragraphs as important, they are not necessarily
commonly accepted.

Requirement: Authorities should have access only to short-
term session keys, not to long-term user secrets. In most crypto-
graphic systems, each user has a long-term private secret.
In public-key cryptography [10], this would be the user’s
“private key.” In a third-party authentication system [7],
this would be the long-term secret shared between the
user and the third-party server. For communications se-
curity, these long-term private secrets are typically used to
negotiate a short-lived session key that in turn is used for
encrypting a given session or conversation. If a legitimate
authority seeks to eavesdrop on a conversation, one of two
things can happen:

® The key escrow system allows the authority to discover
the user’s long-term private secret, through which the
authority can learn the session key for a given conversa-
tion and proceed to eavesdrop.

® The key escrow system allows the authority to recover
the session key for a particular conversation, but not the
long-term private secret. The authority can still eaves-
drop successfully, but the long-term private secret is
safe.

Key escrow systems should be designed around the latter
approach of revealing only short-lived session keys. We
believe this i1s important for several reasons:

® Since the long-term private secret is never revealed to

anyone, it can be reused for other functions, such as

March 1996/Vol.29, No. 3 COMMUNICATIONS OF THE ACM

digital signatures. In systems in which an authority can
access this long-term secret, reusing the long-term pri-
vate secret to generate digital signatures gives the au-
thority the power to forge signatures.

Revealing only session keys, in our opinion, provides a
finer level of granularity of control. For instance, in
such systems, one could implement such policies as:
The authority can eavesdrop on all of John Doe’s con-
versations, except those he has with his wife or lawyer;
or The corporation can decrypt all of John Doe’s files
saved between March 1994 and September 1994, but
not files saved before or after those dates. To our mind,
escrow systems represent a compromise between an
mdividual’s right to privacy and an authority’s right to
eavesdrop. Revealing session keys—as opposed to long-
term private secrets—provides more opportunities for
compromise.

* The compromise is not permanent. That is, in systems
in which long-term private secrets are revealed, the
compromise of the user’s secret is permanent. At some
point, the user must get a new private key, or if the key
is embedded in a chip in a cellular phone, a new chip.
On the other hand, revealing session keys does not com-
promise the long-term integrity of the permanent se-
cret. So, once the period of ‘“legal eavesdropping” is
over, the user does not have to be issued a new private
secret.

We note, however, that delivery of session keys to an au-
thority requires the escrow server to be on-line. But we
are not suggesting that the escrow agent inspect the con-
tents of any messages; in a practical system, it is unlikely
that the agent would have any access to the actual message
stream, and the agent’s participation would be limited to
playing a role in setting up the parameters for a session.

While the justification for this requirement is grounded
in a debatable philosophical stance, the next requirement
1s based on something more concrete—money.

Requirement: 1t is very desirable that the key escrow system
reuse the security infrastructure necessary for other security func-
tions, such as key exchange, digital signatures, and authentica-
tion.

In theory, it is possible there could be distinct security
infrastructures for different security functions. Examples
include long-term private secrets to:

e Authenticate yourself (prove your identity) to a bank
teller machine;

® Sign a document;

® Perform key exchange for encrypting conversations;
and

* Allow you to participate in a key escrow system.

The problem with such an arrangement is cost. Each of
these separate keys has an associated nfrastructure for
generating keys, resetting keys when needed, revoking
keys, and so on. From a user perspective, it may well be
the case that the distinct infrastructures translate into dis-
tinct keys to remember or numerous smartcards to carry.
Finally, quite apart from cost, multiple systems increase
complexity, which significantly affects the ability to main-
tain the desired security functionality.

Requirement: A key escrow system should be implementable
in either hardware or software, should apply to both computer
communications and telephony, and should be usable both for
citizen-government and for employee-organization situations so it
has universal applicability.

This requirement is important for two reasons:

® As we discussed, reusing security infrastructures is ben-
eficial, and it may not be cost-effective to have multiple
infrastructures for different types of key escrow.

® There is a clear convergence between telephony and
computer communications, and it will become increas-
ingly impractical to treat these situations differently;
there is little logic, for instance, in treating voice conver-
sations differently from on-line chat.

Is it possible to design a system that meets all these re-
quirements? We believe the answer is yes, and this article
describes one system that attempts to meet most of them.

Yaksha

The Yaksha system is based on a variant of the RSA [9]
public-key cryptosystem. In public-key cryptography,
each user has a long-term private secret key and an associ-
ated public key. In the RSA system, the private key of user
Alice is a2 number d, and her public key is a pair of num-
bers (¢,,n,). Similarly, user Bob has a private key d; and a
public key (e;,n;). To encrypt a message M, Alice would
typically use some encryption function £ and a session key
k to compute a ciphertext C = E(M,k). To send the mes-
sage to Bob, she would further encrypt the session key &
using Bob’s public key and a function known as modular
exponentiation, that is K = k% mod n;. She would then
send Bob (C,K). Bob would first recover k using his private
key, thatisk = K% mod ny, and can then dcuypt the mes-
sage using a decryption function D, that is M = D(C k).

In this scenario, Alice and Bob are using a shared ses-
sion key k for encrypting communications. Recovering M
from C without knowledge of k will be very difficult. Such
systems, sometimes known as conventional, or single-key,
cryptography, are very efficient compared to public-key
cryptography. The Data Encryption Standard (DES) [10]
is a widely used example. Alice and Bob are, however,
using public-key cryptography to exchange the shared
session key. In our example, Alice encrypts the session key
with Bob’s public key and sends it to him. Due to the
properties inherent in public-key cryptography, recover-
ing k from K requires knowledge of Bob’s private key,
which only he knows.

This system achieves privacy using the conventional
cryptosystem and key exchange using a public key crypto-
system. How does an authority eavesdrop? One approach
would be to split Bob’s private key into multiple pieces at
key-generation time and escrow it with multiple agencies.
Upon getting legal sanction, the authority would collect
the pieces, recreate Bob's private key, and then use it to
recover the session key k. As discussed earlier, at this point
Bob’s private key is no longer private. The approach Yak-
sha uses focuses on revealing the session key & to the au-
thority, thus achieving the authority’s objective without
compromising the user’s long-term private key.

At the heart of our system is an on-line security server,

The Yaksha Security

henceforth called the YaksHa server, which interacts w
users to perform various functions. Each user has a long="
term private secret no one else, including the Yaksha
server, knows or can ever reconstruct. This is truly a pri-
vate secret. The Yaksha server maintains for each user (or
entity) another long-term private secret. This secret is
known only to the Yaksha server and is never disclosed to
anyone, including the user or authorities. The Yaksha
server then interacts with users to perform a number of
security functions:

® Providing credentials to authenticate users to other en-
tities;

Creating joint digital signatures;

Exchanging session keys in a secure fashion; and
Acting as a key escrow agent.

This system, which uses a variant of the RSA system,
works as follows: as in the RSA system, user Alice has, as
her public key the pair (¢,,n,). Unlike the traditional RSA
system, however, the Yaksha system uses two distinct pri-
vate kLys—Ah(e s private key, denoted by d,,, and the
Yaksha server’s corresponding key for Alice, denoted by
d,y. These two new private keys are related to the original
RSA private key d, by the mathematical relation d,, x
d.y = d, mod n,. For a more complete discussion of this
variant and its security properties, please see [1, 4, 5]. This
simple, yet powerful, primitive can be used in a variety of
complex ways.

In the Yaksha system, each user i has his or her own
private key d;, and the Yaksha server maintains a corre-
sponding d;,. The system can now perform several secu-
rity functions:

Digital Signatures. Ganesan and Yacobi [5] show how
the user can interact with the server to sign a message M.
Namely, user Alice performs §1 = M“ mod n, and sen(ls
S1 to the Yaksha server. The Yaksha server uses d,, tc
complete the signature, lhdl is § = §1% mod n,. Now S is
Alice’s signature on message M and is indistinguishable
from a regular RSA signature. Such a system is of practical
importance because by using an on-line server for each
signature, we have instant revocation in case a user’s pri-
vate secret is compromised, have a central place to main-
tain audit trails, and can also (subject to certain restric-
tions) allow the user’s private portion d,, to be a short
memorizable password. The last function is critical to im-
plementing digital signatures in an era when smartcards
and smartcard readers are not yet ubiquitous. In [5], it is
mathematically proven that breaking this system is equiv-
alent to breaking RSA, even in the presence of an active
adversary. It is also shown that neither the user nor the
server can use knowledge of its private key to determine
the private key of the other party; hence the degree of
trust in the server is minimized. See [5] for more details.

Authentication. Several authentication protocols are
possible using the Yaksha system; we will not describe any
in detail here. The interested reader is referred to
Ganesan [4], which shows how the Yaksha server can be
integrated into the Kerberos [8] third-party authentica-
tion system to remove some of the greatest weaknesses of
the latter.

57

COMMUNICATIONS OF THE AcM March 1996/Vol. 39, No. 3

Key Exchange. The key exchange system we describe
here is chosen to make key escrow possible. When Alice
wishes to communicate in private with Bob, she first uses
the Yaksha system to negotiate a shared session key. She
does this by sending a message to the Yaksha server, ex-
pressing her desire to communicate with Bob. The Yaksha
server generates a random session key & and computes
C, = k% % mod n, and G, = k%** mod n,. It sends C, to
Alice and C, to Bob. Alice recovers k using her own private
key d.., that 1s k = C e mod n,. Similarly, Bob would re-
cover k = C,™ mod ny. At this point, Alice and Bob have
the session key &, and the Yaksha server would destroy its
copy of the session key, presumably inside the safe con-
fines of a tamper-resistant chip. For reasons of brevity, we
gloss over the fact that in practice £ would be encoded as
part of a message with a definite structure and a number
of other attributes, such as the time stamp. This fact has an
important implication: When Alice successfully recovers &
from C,, she has proof that C, was indeed sent by the
Yaksha server.

Key Escrow. At the end of the key exchange protocol,
the Yaksha server, which generated the session key, is in a
position to provide this key to an authority. This ability
forms the basis by which Yaksha can be used as an escrow
system. Observe, however, that under no circumstances
can the Yaksha server compromise the user’s long-term
private secret, because the Yaksha server does not know
this secret. More details are provided in the next section.

In practice, these protocols would be significantly em-
bellished. For instance, it is critical that the session key k
be encoded in a data structure with predictable structure.
It is also likely that the message structures will contain
time stamps. We note, however, that the traditional notion
of public-key certificates [6], which provide a mechanism
for a user to retrieve another user’s public key in a secure
fashion, is complementary to Yaksha and would be used
as part of the Yaksha system.

Using Yaksha for Key Escrow

The following paragraphs describe how three very differ-
ent key escrow problems can be solved using the same
Yaksha infrastructure. Because our goal is to illustrate the
concepts, we do not describe several details, some of
which have significant security implications.

Telephony

Our first example is telephony. Since in this model both
parties are on-line at the same time, the key exchange
protocol described previously can be used exactly as
stated. Alice indicates to the Yaksha server a desire for
secure communications with Bob. The Yaksha server dis-
tributes C, to Alice and C, to Bob, who each recover k and
use it for encrypting the conversation. In practice, the
transaction would be transparent to the user, who might,
for instance, simply pick up the phone, dial *007 and then
Bob’s number, and never notice anything else. The key
exchange and other operations would be handled as part
of call set-up, and the Yaksha server would be just one
more of the many intelligent computers now attached to
the phone network to provide special services.

March 1996/Vol. 89, No. 3 COMMUNICATIONS OF THE ACM

‘

When an authority wishes to tap a phone line, a request
R is signed and sent to the Yaksha server. If it is desired
that multiple authorities must cooperate to tap a line, we
can require that R be signed by muitiple authorities. Ob-
serve that the authorities are themselves part of the Yak-
sha system. Kach authority has its own private key dq, d4s,

. » and the Yaksha server keeps a corresponding d,,,
da3y, . . . Gorresponding public keys (¢41,m41), (€42,m42),

. . exist in the system. So if, for instance, certain types of
taps require the signatures of authorities A1 and A2, the
request sent to the Yaksha server can be of the form (R
mod nAI)df’2 mod n4o. The Yaksha server can authenticate
and recover the request using d 41y, d49y, . . . and the corre-
sponding public keys (¢,41,741), {€42,m42) . . . The request R
can take on several forms, so, for instance, it may order
the Yaksha server to provide session keys for all future
conversations Alice carries out, or it may ask for only cer-
tain types of conversations. The key point to note is that
the design provides tremendous flexibility, so a wide vari-
ety of underlying policies can be implemented. Further,
the policies can be changed easily without huge changes to
the system. For instance, if public policy were to change to
requiring four cooperating authorities instead of two, or if
the identities of the authorities should change, minor
changes to the system parameters achieve the goal. The
fact that changes can be made easily may not be of great
theoretical interest, but as is often observed in practice, it
is on such mundane issues as ease of ability to change that
the security of systems rests.

It is worth observing that a part of the system requires
Bob’s telephone to recover & from C;, in a fashion that
ensures proof that C; was generated by the Yaksha server.
This observation means it is possible to prevent a dishon-
est (trying to cheat the key escrow system) Alice from car-
rying out a secure conversation with an honest (playing by
the rules) Bob.

Email
We chose email as our next example because it has a fun-
damental structural difference from the previous example
in the requirements, namely that the underlying messag-
ing is of a store-and-forward nature in which the sender
and receiver are not both on-line at the same time. Cur-
rent systems [6] for secure email are generally based on
having the sender, say Alice, sending the receiver, say
Bob, the following construct:
{EMLR), B mod ny, S, Alice’sCertificate}

The construct has four pieces:

¢ The message M is encrypted with a session key & gener-
ated by Alice.

® The session key k is encrypted with Bob’s public key
e:np. On receiving the message, Bob will use his private
key d; to recover this session key k and will then use % to
recover M from E(M.k).

® Next, a hash, or fingerprint, (M), of the message is
signed by Alice to generate her signature S, thatis § =
(H(M))d" mod 7,. The hash of the message is used in lieu
of the message itself for reasons, of efficiency.

e Finally, Alice’s certificate (which is simply her public
key, in turn signed by a universal authority) is enclosed.

Bob can retrieve Alice’s public key from her certificate
and use it to verify her signature on the hash.

In keeping with our general policy of integrating Yaksha
with existing systems (see [4], where Yaksha is added to
Kerberos) as opposed to creating a fresh system from
scratch, we attempt to reuse these constructs to the extent
possible. We see the system working as follows:

® Alice sends the Yaksha server S1 = H(M)% and indi-
cates that the intended recipient is Bob.

® The Yaksha server computes § = $1% mod n, and re-
plies to Alice with the message S, k™% mod ng, ko=
mod n;. The first portion is simply the completed RSA
signature for Alice on the message M. The second por-
tion is decrypted by Alice using d,,, to recover k. Alice
will use this & to encrypt the message M, that is E(M k).
The third portion is sent on to Bob by Alice without
modification.

* So the message Alice sends Bob is: {I{glef),k‘f""‘“” mod
1S, Alice’sCertificate}. Except for the second field, this is
exactly equivalent to the construct Alice would have sent
Bob in a non-Yaksha system.

¢ When Bob receives this message, he verifies Alice’s sig-
nature exactly as in a non-Yaksha system, but to recover
the session key & he uses dy, that is k = (3% mod n,)™
mod n,.

Since the Yaksha server has the session key &, the actual
escrow process is identical to that described in the teleph-
ony example. Some added benefits to this system are that
it is now possible to make each user’s private long-term
secret dj; a fairly short, memorizable password; see [4] for
more details. From the standpoint of message structure,
the new system is identical to the existing standards [10].
In fact, it is worth observing that interoperability between
Yaksha and non-Yaksha systems is relatively easy. 1f Bob is
not a part of the system, his corresponding Yaksha key d,
is simply set to one. Bob will not notice the difference, and
the escrow will still work. We reiterate that we are glossing
over some details essential to secure functioning; for in-
stance, the hash sent by Alice to the Yaksha server should
have some specific structure so that the Yaksha server can
authenticate Alice before responding.

Encrypted File Storage

As with communications, it is becoming increasingly nec-
essary to provide computer users with access to encrypted
files or data storage, and escrow mechanisms are needed.
In addition to the usual reasons for an authority to be able
to retrieve this data without the user’s cooperation, more
ordinary reasons, like access to a critical file in a co-work-
er’s absence, also come into play. Using Yaksha to meet
this requirement is fairly straightforward; one can think of
countless variations. We describe one such possibility,
which assumes the existence of a file server process that is
an entity independent of the user. The system works as
follows:

* Alice sends the Yaksha server the name of the encrypted
file server F where she wants to store the file.
® The Yaksha server sends Alice a storage key k encrypted

The Yaksha Security Sys

with the Yaksha server’s key for the file server, tha
K5 mod np. .

¢ Alice sends the file server the file and the encryptec
storage key; note Alice does not know the storage key.

® The file server recovers the storage key using its own
private key dpp, encrypts the file with the storage key k,
and stores the encrypred file £(File k) and the encrypted
storage key k™ mod ny..

¢ When Alice wants the file, she simply sends it a signed
and time-stamped request (0, which she signs by inter-
acting with the Yaksha server. The file server can verify
the signature on the request, recover k from k" mod
ng, decrypt the file, and send it to Alice.

® When an authority wants a file, the authority interacts
with the Yaksha server and sends a duly signed request
R 1o the file server. The file server uses the public key(s)
of the authority(ies) to verify the signature on the re-
quest, recover the session key, decrypt the file, and send
it to the authority.

The basic idea is that the file server will only encrypt files
using a key it gets from Yaksha. It then stores this key in
an encoded form with the file itself. Note that in practice
such a system would have provisions for mutual authenti-
cation and encrypted communications between the users
and the file servers, and most likely would require a
signed hash of the file also be stored. All of these functions
can be achieved by reusing the Yaksha infrastructure.
Observe that we require the file server process to have a
long-term private secret key dy, which it must keep in
persistent storage. We anticipate that in a practical system,
this key and the functions performed with it will happen
inside the safe confines of a tamper-resistant chip. Using a
tamper-resistant chip is not particularly onerous, espe-
cially since we do not require the storage key for each file
to be stored inside the chip. Several variations on this
theme are possible.

Conclusions
The Yaksha system requires the presence of an on-line
server. In the current climate of cheap and ubiquitous
communications, this is (in almost all cases) not a problem.
In telephony, for example, on-line servers that provide
intelligent services are already ubiquitous. Also consider
that today, most credit-card transactions result in access to
remote computer systems. Thus, assuming the existence
of an on-line service seems to be reasonable; we also as-
sume that the Yaksha server itself will be maintained in a
secure fashion. We expect the use of tamper-resistant
chips to play a significant role here. For instance, we ex-
pect that the Yaksha server’s portions of user keys d,, will
be encrypted using some sort of master key, which would
itself always be stored inside a tamper-resistant chip, and
that all the functions performed will happen inside this
chip. Given that today’s technology allows for systems
where every user has a tamper-resistant chip, we do not
believe it is too onerous for a few servers to have such
chips.

The question then arises: Can colluding cheaters defeat
the Yaksha key escrow system? The answer is yes; we do
not know of any key escrow system that determined col-

COMMUNICATIONS OF THE acm March 1996/Vol 39 No. 3

CALL FOR PAPERS

Third IEEE International Symposium on

Requirements Engineering
January 5-8, 1997 « Annapolis, Maryland, USA

The 1997 symposium will be held in four exquisite 18th-century
inns clustered in the beautiful colonial seaport of Annapolis on
the scenic shores of Chesapeake Bay. 1t will bring together
researchers and practitioners for an exchange of ideas and
experiences. The program will consist of invited talks, paper
presentations, panels, tutorials, working groups, demonstrations,
and a doctoral consortium. The program will also include a
parallel industrial track with presentations on industry problems
and experiences, transferable technology, and commercial tools.
Papers describing original research in requirements engineering
are invited. Symposium organizers extend a special invitation for
paper submission and participation to rescarchers and practitio-
ners working in high assurance, safety-critical and mission-
critical systems, and formal approaches to requirements.
Authors should submit six (6) copies of each full paper (no
email or FAX) to the Program Chair. Papers must not exceed
6000 words and must be accompanied by full contact informa-
tion including name, address, email address, and telephone and
FAX numbers. Authors should also submit the title, abstract, and
classifications of each paper by email to the Program Chair a
month before the paper is due along with full contact informa-
tion. All papers must be classified according to the symposium
classification scheme. For a full call for papers, including the
classification scheme, contact the Program Chair, use anonymous
FTP from cs.toronto.cdu (/dist/ISRE97/CFP), or see the WWW
page at http://www.itd.nrl.navy.mil/conf/ISRE97. Developers or
researchers wishing to present in the industrial track should
submit an abstract to the Industrial Chair. Students interested in
presenting at the doctoral consortium should send an extended
abstract to the Doctoral Consortium Chair by Sept. 15, 1996,

IMPORTANT DATES:

April 1, 1996: Title, abstract, and classifications due
May 1, 1996: Full papers, industry abstracts due
July 1, 1996: Notification of acceptance
September 1, 1996: Camera-ready copy due

FOR MORE INFORMATION, CONTACT:
Connie Heitmeyer, General Chair
Code 5546, Naval Research Lab, Wash., DC 20375
(202) 767-3596; heitmeyer @itd.nrl.navy.mil
John Mylopoulos, Program Chair
Dept. Computer Sci., Univ. of Toronto, 6 King’s College
Rd., Rm 283, Toronto, Ontario Canada M5S 3H5
(416) 978-5180; fax (416) 978-1455
jm@cs.toronto.edu
Stuart Faulk, Industrial Chair
Kaman Sciences; (202) 404-6292
faulk @itd.nrl.navy.mil
Myla Archer, Doctoral Consortium Chair
Naval Research Lab; (202) 404-6304
archer@itd.nrl.navy.mil

Sponsored by

@ COMPUTER SOCIETY

S5(OYEARS OF SERVICE *1946-1996

IEEE

IEEE Computer Society TC on Software Engineering

In cooperation with
ACM SIGSOFT, IFIP WG 2.9 (Software Requirements)

60 March 1996/V0l.39, No. 3 COMMUNICATIONS OR THE ACM

luding cheaters cannot defeat. The intent here, as in simi-
lar systems, is to make it difficult to cheat. We believe this
issue is probably addressable at the level of detecting
cheating and denying service to cheaters. This is practical
in many situations, although an explanation of the tech-
niques is beyond the scope of this article.

The system we describe can be used for many different
problem domains, such as secure transmission of movies
or software between information providers and set-top
boxes in users’ homes. The key point in our mind is that
the Yaksha system is a single versatile security infrastruc-
ture that can be reused for myriad security functions.
While not emphasized today, the security infrastructures
that will thrive in the future will have the attribute of
being reusable.

Finally, we reiterate that flexibility is the single most
important factor in a key escrow system. Successful key
escrow systems represent a2 compromise between an indi-
vidual’s rights and an authority’s right to know. The Yak-
sha system provides a flexible alternative that can be
adapted to many situations.

Acknowledgment
I would like to thank Dorothy Denning for handling this
article for this special section and for her continuing inter-
est in this work.

References

1. Boyd, C. Digital Multisignatures, Cryptography and Coding. Clar-
endon Press, Oxford, 1989. H.J. Beker and F.C. Piper, Eds.

2. Denning, D. To tap or not to tap. Commun. ACM 36, 3 (Mar.
1998).

3. Denning, D., and Branstad, D. A taxonomy for key-escrow
encryption systems. Commun. ACM 39, 3 (Mar. 1996).

4. Ganesan, R. Yaksha: Augmenting Kerberos with public-key
cryptography. In Proceedings of the Internet Society Symposivum
on Network and Distributed Systems Security, (Feb.y 1995.

5. Ganesan, R., and Yacobi, Y. A secure joint signature and key
exchange system. Bellcore TM-24531, Oct. 1994.

6. Kent, S. Privacy Enhancement for Internet Electronic Mail:
Part II: Certificate Based Key Management, Internet RFC
1422, Feb. 1993.

7. Needham, R.M., and Schroeder, M.D. Using encryption for
authentication in large networks of computers. Commun.
ACM 21, 12 (Dec. 1978).

8. Neuman, B.C., and Ts'o, T. Kerberos: An authentication ser-
vice for computer networks. IEEE Commun. (Sept. 1994).

9. Rivest, R,, Shamir, A., and Adelman, L. On digital signatures
and public-key cryptography. Commun. ACM 27, 7 (July
1978).

10. Schneier, B. Applied Crypiography: Protocols, Algorithms and.
Source Code in C. Wiley, New York, 1994,

About the Author:

RAVI GANESAN is Vice President for Information Technology
at Bell Atlantic and is with The Johns Hopkins University. Au-
thor’s Present Address: Bell Atlantic, 1320 North Courthouse
Road, Arlington, VA 22304; email: ravi.ganesan@bell-atl.com

©ACM 0002-0782/96/0300 $3.50

