
T h e Y a l (s h a S e c u r i t y

Heralding
the Yaksha security
multiple security
digita

future reusabJe security
infrastructure

systems,
provides

functJons~authentJcatJon,
signatures, key exchange, and key escrow.

Th

Security System
Ravi Ganesan

" ' . : . " : . ' . " • : . i ' . . ~ : : • .

Hindu methology, Yakshas are "good" demigods who guard the

ates of heaven. They are extremely flexible and have the power to

"ansform themselves into other forms, such as birds and tigers. In

esigning the security infrastructure that will guard the gates t o our
: ' ; : : : . 7 : ' i i ! g i ~ : ~ i { ÷ : ' : k . ' : h ' : " " " "

emerging information infrastructure, it is impor tan t
that we look for similar flexibility. The Yaksha securi-
ty system is a security technology [4, 5] capable of
reusing a single security infrastructure to pe r fo rm
various security f u n c t i o n s - - a u t h e n t i c a t i o n , key

cooperat ion of the participants. Clearly, encrypting
information being communica ted or stored could
put the third parties at a significant disadvantage.
Techniques for providing secure communicat ions
and storage with intentional backdoors that allow

exchange, digital signatures, and key escrow. This legitimate third parties access to the information fall
article describes how the Yaksha security system can
be used for key escrow.

It is commonly accepted that encrypted communi-
cations and data storage make up an essential com-
ponen t of our emerging information infrastructure.

into the broad category of what may be described as
key escrow systems• T h r o u g h o u t this article, we use the
te rm authority synonymously with legitimate third party.

When the authority is the government and the par-
ticipants are citizens, the entire concept is fairly contro-

Somewhat more controversial is the concept that cer- versial, as has been well documented in the pages of this
tain third pa r t i e smother than those communica t ing
or storing informat ion---may have a legitimate right.to
seek access to the information without the active

magazine [12] and other publications. In this context,
the system that dominates the discussion is the so-called
Escrow Encrypuon Standard or Clipper System [3]. An

*~ 5 5 C O M M U N I C A T I O N S O F T H E A C M Mal°ch 1996/~,ot. 3,), No. 3

analogous (and in our opinion, less controversial) situa-
tion exists when the information is owned by an organiza-
tion or corporation, the participants are employees, and
the third parties are legitimate organizational or corpo-
rate authorities. The term "corporate key escrow" is
loosely used to describe this situation.

Several key escrow systems have been proposed in re-
cent years, and in this issue of Communications, Denning
and Branstad [3] present an excellent summary and tax-
onomy of these various systems. Each of these systems
approaches the problem using a different underlying
technical approach, as well as from what can be described
as a different philosophical stance. The Yaksha system has
its own philosophical stance, beginning with a different set
o f assumptions about the requirements than many of the
o ther systems. The article begins with a summary of key
requirements driving the design of the system, provides
some necessary background, describes the general system,
shows example applications for telephony, email, and
data storage, and finally summarizes our conclusions.

Requirements
Two commonly accepted requirements essentially define
key escrow systems:

• The system should provide an authority the ability to
access encrypted information without the cooperat ion
o f the participants.

• T h e "backdoor" inherent in the system should not be
usable by an unauthor ized third party.

Although we view the requirements discussed in the tbl-
lowing paragraphs as important , they are not necessarily
commonly accepted.

Requirement: Authorities should have access only to short-
term session keys, not go long-term user secrets. [n most crypto-
graphic systems, each user has a long-term private secret.
In public-key cryptography [10], this would be the user's
"private key." In a third-party authentication system [7],
this would be the long-term secret shared between the
user and the third-party server. For communicat ions se-
curity, these long-term private secrets are typically used to
negotiate a short-lived session key that in turn is used for
encrypt ing a given session or conversation. I f a legitimate
authority seeks to eavesdrop on a conversation, one of two
things can happen:

• T h e key escrow system allows the authority to discover
the user's long-term private secret, th rough which the
authori ty can learn the session key for a given conversa-
tion and proceed to eavesdrop.

• The key escrow system allows the authority to recover
the session key for a particular conversation, but not the
long-term private secret. The authority can still eaves-
d rop successfully, but the long-term private secret is
s a l e .

Key escrow systems should be designed a round the latter
approach of revealing only short-lived session keys. We
believe this is impor tant for several reasons:

• Since the long-term private secret is never revealed to
anyone, it can be reused ~or other functions, such as

digital signatures. In systems in which an authority can
access this long-term secret, reusing the long-term pri-
vate secret to generate digital signatures gives the au-
thority the power to forge signatures.

• Revealing only session keys, in our opinion, provides a
finer level of granularity of control. For instance, in
such systems, one could implement such policies as:
The authori ty can eavesdrop on all o f J o h n Doe's con-
versations, except those he has with his wife or lawyer;
or T he corporat ion can decrypt all of J o h n Doe's files
saved between March 1994 and September 1994, but
not files saved before or after those dates. To our mind,
escrow systems represent a compromise between an
individual's right to privacy and an authority 's right to
eavesdrop. Revealing session keys- -as opposed to long-
term private secre ts - -provides more opportunit ies for
compromise.

• T h e compromise is not permanent . Tha t is, in systems
in which long-term private secrets ave revealed, the
compromise o f the user's secret is permanent . At some
point, the user must get a new private key, or if the key
is embedded in a chip in a cellular phone, a new chip.
On the other hand, revealing session keys does not com-
promise the long-term integrity o f the pe rmanen t se-
cret. So, once the period o f "legal eavesdropping" is
over, the user does not have to be issued a new private
secret.

We note, however, that delivery of session keys to an au-
thority requires the escrow server to be on-line. But we
are not suggesting that the escrow agent inspect the con-
tents o f any messages; in a practical system, it is unlikely
that the agent would have any access to the actual message
stream, and the agent 's participation would be limited to
playing a role in setting up the parameters for a session.

While the justification for this requirement is g rounded
in a debatable philosophical stance, the next requirement
is based on something more conc re t e - -money .

Requirement: It is ve*~y desirable that the key escrow system
reuse the security infrastructure necessary for other secu, rity fu, nc-
lions, such as key exchange, digital signatures, and authentica-
tion.

In theory, it is possible there could be distinct security
infrastructures for different security functions. Examples
include long-term private secrets to:

• Authenticate yourself (prove your identity) to a bank
teller machine;

• Sign a document ;
• Perform key exchange for encrypt ing conversations;

and
• Mlow you to participate in a key escrow system.

T he problem with such all a r rangement is cost. Each of
these separate keys has an associated infrastructure for
generat ing keys, resetting keys when needed, revoking
keys, and so on. From a user perspective, it may well be
the case that the distinct infi-astructures translate into dis-
tinct keys to remember or numerous smartcards to carry.
Finally, quite apart from cost, multiple systems increase
complexity, which significantly affects the ability to main-
tain the desired security functionality.

S ~ March 1996/Vol.39, No. 3 ~OI4MI~WlCA' r lONI O i l T i l l ACM

T h e Y a k l l h a s e c u r i t y S y s l

Requirement: A key escrow system should be implementable
in either hardware or software, should apply to both computer
communications and telephony, and should be usable both for
citizen-government and for employee-organization situations so it
has universal applicability.

This requirement is important for two reasons:

• As we discussed, reusing security infrastructures is ben-
eficial, and it may not be cost-effective to have multiple
infrastructures for different types of key escrow.

• There is a clear convergence between telephony and
computer communications, and it will become increas-
ingly impractical to treat these situations differently;
there is little logic, for instance, in treating voice conver-
sations differently from on-line chat.

Is it possible to design a system that meets all these re-
quirements? We believe the answer is yes, and this article
describes one system that attempts to meet most of them.

Yaksha
The Yaksha system is based on a variant of the RSA [9]
public-key cryptosystem. In public-key cryptography,
each user has a long-term private secret key and an associ-
ated public key. In the RSA system, the private key of user
Alice is a number d(, and her public key is a pair of num-
bers (ea,na). Similarly, user Bob has a private key db and a
public key (et,,nt,). To encrypt a message M, Alice would
typically use some encryption function E and a session key
k to compute a ciphertext C = E(M,k). To send the mes-
sage to Bob, she would further encrypt the session key k
using Bob's public key and a function known as modular
exponentiat ion, that is K = U ~' mod nb. She would then
send Bob (C,K). Bob would first recover k using his private
key, that is k = K db mod rib, and can then decrypt the mes-
sage using a decryption function D, that is M = D(C,k).

In this scenario, Alice and Bob are using a shared ses-
sion key k for encrypting communications. Recovering M
from C without knowledge ofk will be very difficult. Such
systems, sometimes known as conventional, or single-key,
cryptography, are very efficient compared to public-key
cryptography. The Data Encryption Standard (DES) [10]
is a widely used example. Alice and Bob are, however,
using public-key cryptography to exchange the shared
session key. In our example, Alice encrypts the session key
with Bob's public key and sends it to him. Due to the
propert ies inherent in public-key cryptography, recover-
ing k from K requires knowledge of Bob's private key,
which only he knows.

This system achieves privacy using the conventional
cryptosystem and key exchange using a public key crypto-
system. How does an authori ty eavesdrop? One approach
would be to split Bob's private key into mult iple pieces at
key-generation time and escrow it with multiple agencies.
Upon getting legal sanction, the authority would collect
the pieces, recreate Bob's private key, and then use it to
recover the session key k. As discussed earlier, at this point
Bob's private key is no longer private. The approach Yak-
sha uses focuses on revealing the session key k to the au-
thority, thus achieving the authority 's objective without
compromising the user's long-term private key.

At the heart of our system is an on-line security server,

henceforth called the Yaksha server, which interacts ~
users to perform various functions. Each user has a ld]
term private secret no one else, including the Y a k s h a
server, knows or can ever reconstruct. This is truly a pri-
vaie secret. The Yaksha server maintains for each user (or
entity) another long-term private secret. This secret is
known only to the Yaksha server and is never disclosed to
anyone, including the user or authorities. The Yaksha
server then interacts with users to perform a number of
security functions:

• Providing credentials to authenticate users to other en-
tities;

• Creating jo in t digital signatures;
• Exchanging session keys in a secure fashion; and
• Acting as a key escrow agent.

This system, which uses a variant of the RS A system,
works as follows: as in the RSA system, user Alice has, as
her public key the pair (e,,,na). Unlike the traditional RSA
system, however, the Yaksha system uses two distinct pri-
vate keys--Alice 's private key, denoted by d,a, and the
Yaksha server's corresponding key for Alice, denoted by
day. These two new private keys are related to the original
RSA private key da by the mathematical relation d(,, ×
day = d(~ mod na. For a more complete discussion of this
variant and its security propert ies, please see [1,4, 5]. This
simple, yet powerful, primitive can be used in a variety of
complex ways.

In the Yaksha system, each user i has his or her own
private key dii, and the Yaksha server maintains a corre-
sponding diy. The system can now perform several secu-
rity functions:

Digital Signatures. Ganesan and Yacobi [5] show how
the user can interact with the server to sign a message M.
Namely, user Alice performs S 1 = M (l'' mod na and sends
S1 to the Yaksha server. The Yaksha server uses d(,y to
complete the signature, that is S = Sld"y mod na. Now S is
Alice's signature on message M and is indistinguishable
from a regular RSA signature. Such a system is of practical
importance because by using an on-line server for each
signature, we have instant revocation in case a user's pri-
vate secret is compromised, have a central place to main-
tain audit trails, and can also (subject to certain res t r ic-
tions) allow the user's private port ion da(, to be a short
memorizable password. The last function is critical to im-
p lement ing digital signatures in an era when smartcards
and smartcard readers are not yet ubiquitous. In [5], it is
mathematically proven that breaking this system is equiv-
alent to breaking RSA, even in the presence of an active
adversary. It is also shown that nei ther the user nor the
server can use knowledge of its private key to determine
the private key of the other party; hence the degree of
trust in the server is minimized. See [5] for more details.

Authent icat ion. Several authentication protocols are
possible using the Yaksha system; we will not describe any
in detail here. The interested reader is referred to
Ganesan [4], which shows how the Yaksha server can be
integrated into the Kerberos [8] third-party authentica-
tion system to remove some of the greatest weaknesses of
the latter.

J IL l UN IC .A ' I ' ION I l i OP T I I ! A |N March 1996/VoL 39, No. 3 S

K e y Exchange . T h e key exchange system we descr ibe
here is chosen to make key escrow possible. When Alice
wishes to communica te in pr ivate with Bob, she first uses
the Yaksha system to negot ia te a sha red session key. She
does this by send ing a message to the Yaksha server, ex-
press ing her des i re to communica te with Bob. T h e Yaksha
server genera tes a r a n d o m session key k a n d computes
C, = k (l'~'×~" mud na and Ct) = k d~'×~ mud no. It sends Ca to
Alice and Cb to Bob. Alice recovers k using her own pr ivate
key d(,,, that is k = C(, ~l"' mud n(,. Similarly, Bob would re-
cover k = Ci, a~'~' mud no. At this point , Alice and Bob have
the session key k, and the Yaksha server would des t roy its
copy of the session key, p r e sumab ly inside the safe con-
fines o f a t amper - re s i s t an t chip. For reasons of brevity, we
gloss over the fact that in pract ice k would be en co de d as
pa r t o f a message with a def ini te s t ruc ture and a n u m b e r
of o the r a t t r ibutes , such as the t ime s tamp. This fact has an
i m p o r t a n t implicat ion: W h e n Alice successfully recovers k
from C~,, she has p r o o f that Ca was i ndeed sent by the
Yaksha server.

K e y Escrow. At the end o f the key exchange protocol ,
the Yaksha server, which gene ra t ed the session key, is in a
posi t ion to p rov ide this key to an author i ty . This ability
forms the basis by which Yaksha can be used as an escrow
system. Observe, however , that u n d e r no c i rcumstances
can the Yaksha server c o m p r o m i s e the user 's l ong- t e rm
pr ivate secret, because the Yaksha server does not know
this secret. More details a re p rov ided in the next section.

In pract ice, these protocols would be significantly em-
bell ished. For instance, it is critical that the session key k
he e n c o d e d in a da ta s t ruc ture with p red ic tab le s t ructure .
It is also likely that the message s t ruc tures will conta in
t ime stamps. We note, however , that the t rad i t ional not ion
o f publ ic-key certificates [6], which p rov ide a mechan i sm
for a user to re t r ieve a n o t h e r user 's public key in a secure
tashion, is c o m p l e m e n t a r y to Yaksha and would be used
as pa r t of the Yaksha system.

Using Yaksha for Key Escrow
T h e following p a r a g r a p h s descr ibe how three very differ-
ent key escrow p rob lems can be solved us ing the same
Yaksha inf ras t ruc ture . Because ou r goal is to i l lustrate the
concepts , we do not descr ibe several details , some o f
which have significant securi ty implicat ions.

Telephony
O u r first exa m p l e is t e lephony. Since in this mode l both
part ies a re on- l ine at the same time, the key exchange
pro tocol descr ibed previously can be used exactly as
stated. Alice indicates to the Yaksha server a des i re for
secure communica t ions with Bob. T h e Yaksha server dis-
t r ibutes C,, to Alice and Cb to Bob, who each recover k and
use it for enc ryp t ing the conversa t ion. In pract ice, the
t ransact ion would be t r a n s p a r e n t to the user, who might ,
tor instance, s imply pick up the phone , dial *007 and then
Bob's nu mbe r , and never notice any th ing else. T h e key
exchange and o the r opera t ions would be h a n d l e d as pa r t
o f call set-up, and the Yaksha server would he j u s t one
more o f the many inte l l igent compu te r s now a t tached to
the p h o n e ne twork to p rov ide special services.

W h e n an au thor i ty wishes to tap a p h o n e line, a reques t
R is s igned and sent to the Yaksha server• I f it is des i red
that mul t ip le author i t ies must coopera t e to tap a line, we
can requ i re that R be s igned by mul t ip le authori t ies . Ob-
serve that the author i t ies a re themselves par t of the Yak-
sha system. Each au thor i ty has its own pr ivate key dAl, dA2,
. . . . and the Yaksha server keeps a c o r r e s p o n d i n g dAly,
dA2y C o r r e s p o n d i n g publ ic keys (eAt,IrA l), (e A 2 , / ' / A 2) ,

• . . exist in the system. So it, for instance, cer ta in types o f
taps requ i re the s ignatures o f au thor i t ies A 1 and A2, the
reques t sent to the Yaksha server can be o f the form (R d~'
mod nA 1) aA~ rood 7/.A2. T h e Yaksha server can au then t i ca te
and recover the reques t us ing dA ly, dA2y and the corre-
s p o n d i n g publ ic keys (CA l,nAl), (eA2,nA2) • . . T h e reques t R
can take on several forms, so, for instance, it may o r d e r
the Yaksha se rver to p rov ide session keys for all fu tu re
conversat ions Alice carries out, o r it may ask for only cer-
tain types of conversat ions . T h e key po in t to note is that
the des ign prov ides t r e m e n d o u s flexibility, so a wide vari-
ety o f un de r ly ing policies can be i m p l e m e n t e d . Fu r the r ,
the policies can be ch a nge d easily wi thout huge changes to
the system. For instance, i f public policy were to change to
r equ i r ing four coope ra t ing au thor i t ies ins tead o f two, o r if
the ident i t ies of the author i t ies should change, m i n o r
changes to the system p a r a m e t e r s achieve the goal. T h e
fact that changes can be m a d e easily may not be o f g rea t
theoret ica l interest , bu t as is often observed in pract ice, it
is on such m u n d a n e issues as ease o f abili ty to change that
the securi ty of systems rests.

I t is wor th observ ing that a pa r t o f the system requi res
Bob's t e l ephone to recover k f rom Ct, in a fashion tha t
ensures p r o o f that Cb was g e n e r a t e d by the Yaksha server.
This observat ion means it is possible to p r e v e n t a d i shon-
est (t rying to cheat the key escrow system) Alice f rom car-
ry ing out a secure conversa t ion with an hones t (p laying by
the rules) Bob.

Email
We chose emai l as ou r next ex a mp le because it has a fun-
d a m e n t a l s t ruc tura l d i f ference f rom the p rev ious e x a m p l e
in the r equ i remen t s , namely that the un de r l y i n g messag-
ing is o f a s to re -and - fo rward na tu re in which the s ende r
a n d receiver a re not both on- l ine at the same time. Cur-
r en t systems [6] for secure emai l a re genera l ly based on
having the sender , say Alice, s end ing the receiver, say
Bob, the following construct :
{E(M,k), k e~' mud n~, S, Alice'sCertificate}

T h e cons t ruc t has four pieces:

• T h e message M is enc ryp t ed with a session key k gener -
a ted by Alice.

• T h e session key k is enc ryp t ed with Bob's publ ic key
eb,nb. O n receiving the message, Bob will use his pr iva te
key db to recover this session key k and will then use k to
recover 34 f rom E(M,k).

• Next , a hash, o r f ingerpr in t , H(M) , of the message is
s igned by Alice to gene ra t e he r s igna ture S, tha t is S =
(H(M)) (l" mud ha. T h e hash of the message is used in lieu
o f the message itself for reasons, o f efficiency.

• Finally, Alice's certificate (which is s imply he r publ ic
key, in tu rn s igned by a universa l au thor i ty) is enclosed.

$ 8 March 1996/Vol. gg, No. 3 ~ u ~ a r ~ N s ~ T m a c M

T h o Y n k g h n S o c u i , i t y

Bob can retrieve Alice's public key from her certificate
and use it to verify her s ignature on the hash.

In keeping with o u r genera l policy of in tegra t ing Yaksha
with existing systems (see [4], where Yaksha is added to
Kerberos) as opposed to creat ing a fresh system from
scratch, we a t tempt to reuse these constructs to the extent
possible. We see the system working as fbllows:

• Alice sends the Yaksha server S1 = H(M) 4. and indi-
cates that the i n t e n d e d recipient is Bob.

• The Yaksha server computes S = Sla'~ ~ mod na and re-
plies to Alice with the message S, kd,,C e. m od na, kd* x~',
mod nt, The first por t ion is simply the completed RSA
signature for Mice on the message M. Th e second por-
t ion is decrypted by Mice us ing da~ to recover k. Alice
will use this k to encrypt the message M, that is E(M,k).
Th e thi rd por t ion is sent on to Bob by Alice without
modification.

• So the message Alice sends Bob is: {E(M,k),ka~ ~×~', mod
½,S,Alice'sCertificate}. Except for the second field, this is
exactly equivalent to the construct Mice would have sent
Bob in a non-Yaksha system.

• W h e n Bob receives this message, he verifies Alice's sig-
na tu re exactly as in a non-Yaksha system, bu t to recover
the session key k he uses dbb, that is k = (k dt~xet' mod no) dl'l'
mo d rib.

Since the Yaksha server has the session key k, the actual
escrow process is identical to that described in the teleph-
ony example. Some added benefits to this system are that
it is now possible to make each user 's private long- te rm
s e c r e t dii a fairly short, memorizable password; see [4] for
more details. F rom the s t andpo in t of message structure,
the new system is identical to the existing s tandards [10].
In fact, it is worth observing that interoperabi l i ty between
Yaksha and non-Yaksha systems is relatively easy. I f Bob is
no t a par t of the system, his co r re spond ing Yaksha key dt~
is simply set to one. Bob will not notice the difference, and
the escrow will still work. We rei terate that we are glossing
over some details essential to secure funct ioning; for in-
stance, the hash sent by Alice to the Yaksha server should
have some specific s t ructure so that the Yaksha server can
authent icate Alice before responding .

Encrypted File Storage
As with communica t ions , it is becoming increasingly nec-
essary to provide compu te r users with access to encrypted
files or data storage, an d escrow mechanisms are needed.
In addi t ion to the usual reasons for an author i ty to be able
to retr ieve this data without the user 's cooperat ion, more
o rd inary reasons, like access to a critical file in a co-work-
er 's absence, also come into play. Using Yaksha to meet
this r equ i r em en t is fairly straightforward; one can think of
countless variations. We describe one such possibility,
which assumes the existence of a file server process that is
an enti ty i n d e p e n d e n t of the user. Th e system works as
follows:

• Alice sends the Yaksha server the n a m e of the encrypted
file server F where she wants to store the file.

• The Yaksha server sends Mice a storage key k encrypted

with the Yaksha server 's key for the file se
k d*~xeF mod II F.

• Alice sends the file server the file and th
storage key; note Alice does no t know the s~ ,,~y-

• T h e file server recovers the storage key us ing its own
private key dFr , encrypts the file with the storage key k,
and stores the encrypted file E(File,k) and the encrypted
storage key k d'~×e~ mod n r.

• W h e n Alice wants the file, she simply sends it a s igned
and t ime-s tamped request Q, which she signs by inter-
acting with the Yaksha server. The file server can verify
the s ignature on the request, recover k from E l'~×'' mod
nF, decrypt the file, and send it to Alice.

• W h e n an authori ty wants a file, the authori ty interacts
with the Yaksha server and sends a duly signed request
R to the file server. The file server uses the public key(s)
of the authority(ies) to verify the s ignature on the re-
quest, recover the session key, decrypt the file, and send
it to the authori ty.

T h e basic idea is that the file server will only encrypt files
us ing a key it gets from Yaksha. It then stores this key in
an encoded form with the file itself. Note that in practice
such a system would have provisions for mutua l authent i -
cation and encrypted communica t ions between the users
and the file servers, and most likely would require a
s igned hash of the file also be stored. All of these funct ions
can be achieved by reus ing the Yaksha infrastructure.
Observe that we require the file server process to have a
long- te rm private secret key dFr , which it must keep in
persis tent storage. We anticipate that in a practical system,
this key and the funct ions pe r fo rmed with it will h a p p e n
inside the safe confines of a tamper-res is tant chip. Using a
tamper-res is tant chip is no t part icularly onerous , espe-
cially since we do not requi re the storage key for each file
to be stored inside the chip. Several variations on this
theme are possible.

Conclusions
T h e Yaksha system requires the presence of an on-l ine
server. In the cu r r en t climate of cheap and ubiqui tous
communica t ions , this is (in almost all cases) not a problem.
In te lephony, for example, on- l ine servers that provide
intel l igent services are already ubiquitous. Also consider
that today, most credit-card transactions result in access to
remote compu te r systems. Thus , assuming the existence
of an on- l ine service seems to be reasonable; we also as-
sume that the Yaksha server itself will be main ta ined in a
secure fashion. We expect the use of tamper-res is tant
chips to play a significant role here. For instance, we ex-
pect that the Yaksha server 's por t ions of user keys div will
be encrypted us ing some sort of master key, which veould
itself always be stored inside a tamper-res is tant chip, and
that all the funct ions pe r fo rmed will h a p p e n inside this
chip. Given that today's technology allows for systems
where every user has a tamper-res is tant chip, we do not
believe it is too onerous for a few servers to have such
chips.

T h e quest ion then arises: Can col luding cheaters defeat
the Yaksha key escrow system? The answer is yes; we do
not know of any key escrow system that de t e rmined col-

COMMUNICATION| ~ THE ACM March 1996/Vol.39, No. 3 $ 9

CALL FOR PAPERS

N
Third IEEE International'Symposium on
Requirements Engineering

January 5-8, 1997 * Annapol is, Maryland, USA

The ! 997 symposium will be held in four exquisite 18th-century
inns clustered in the beautiful colonial seaport of Annapolis on
the scenic shores of Chesapeake Bay. It will bring together
researchers and practitioners for an exchange of ideas and
experiences, The program will consist of invited talks, paper
presentations, panels, tutorials, working groups, demonstrations,
and a doctoral consortium. The program will also include a
parallel industrial track with presentations on industry problems
and experiences, transferable technology, and commercial tools.

Papers describing original research in requirements engineering
are invited. Symposium organizers extend a special invitation for
paper submission and participation to researchers and practitio-
ners working in high assuranee, safety-critical and mission-
critical systems, and formal approaches to requirements.

Authors should submit six (6) copies of each full paper (no
email or FAX) to the Program Chair. Papers must not exceed
6000 words and must be accompanied by full contact informa-
tion including name, address, email address, and telephone and
FAX numbers. Authors should also submit the title, abstract, and
classifications of each paper by email to the Program Chair a
month before the paper is due along with full contact informa-
tion. All papers must be classified according to the symposium
classification scheme. For a full call for papers, including the
classification scheme, contact the Program Chair, use anonymous
FTP from cs.toronto.edu (/dist/ISRE97/CFP), or see the WWW
page at http://www.itd,nrl.navy.mil/conf/lSRE97. Developers or
researchers wishing to present in the industrial track should
submit an abstract to the Industrial Chair. Students interested in
presenting at the doctoral consortium should send an extended
abstract to the Doctoral Consortium Chair by Sept. 15, 1996.

I M P O R T A N T D A T E S :
April 1, 1996: Title, abstract, and classifications due
May 1, 1996: Full papers, industry abstracts due
July 1, 1996: Notification of acceptance
September 1, 1996: Camera-ready copy due

F O R M O R E I N F O R M A T I O N , C O N T A C T :
Connie Heitmeyer, General Chair

Code 5546, Naval Research Lab, Wash., DC 20375
(202) 767-3596; heitmeyer@itd.nrl.navy.mil

John Mylopoulos, Program Chair
Dept. Computer Sci., Univ. of Toronto, 6 King's College
Rd., Rm 283, Toronto, Ontario Canada M5S 3H5
(416) 978-5180; fax (416) 978-1455
jm @ cs.toronto.edu

Stuart Faulk, Industrial Chair
Kaman Sciences; (202) 404-6292
faulk@itd.nrl.navy.mil

Myla Archer, Doctoral Consortium Chair
Naval Research Lab; (202) 404-6304
archer @itd.nrl.navy.mil

Sponsored by
~ 1"-,l IEEE 4 ~

L , , O M P U T E R S O C I E T Y
~0YEARS OF SERVICE * 1 9 ~ 6-1 9 9 6

IEI~E

IEEE Computer Society TC on Software Engineering
In cooperation with

ACM SIGSOFT, IFIP WG 2.9 (Software Requirements)

lud ing cheaters cannot defeat. T h e intent here, as in simi-
lar systems, is to make it difficult to cheat. We believe this
issue is probably addressable at the level o f de tec t ing
cheat ing and deny ing service to cheaters. This is practical
in many situations, a l though an explana t ion o f the tech-
niques is beyond the scope of this article.

T h e system we describe can be used for many dif ferent
p rob lem domains , such as secure t ransmission o f movies
or software be tween in format ion providers and set-top
boxes in users ' homes. T h e key poin t in our mind is that
the Yaksha system is a single versatile security infrastruc-
ture that can be reused for myr iad security functions.
While not emphas ized today, the security infrastructures
that will thr ive in the fu ture will have the at t r ibute of
being reusable.

Finally, we rei terate that flexibility is the single most
impor t an t factor in a key escrow system. Successful key
escrow systems represen t a compromise be tween an indi-
vidual 's rights and an author i ty ' s r ight to know. T h e Yak-
sha system provides a flexible al ternat ive that can be
adap ted to many situations.

Acknowledgment
I would like to thank Dorothy Denn ing for hand l ing this
article for this special section and for he r con t inu ing inter-
est in this work.

References
1. Boyd, C. Digital Multisignatures, Cryptography and Coding. Clar-

endon Press, Oxford, 1989. H.J. Beker and F.C. Piper, Eds.
2. Denning, D. To tap or not to tap. Commun. ACM 36, 3 (Mar.

1993).
3. Denning, D., and Branstad, D. A taxonomy for key-escrow

encryption systems. Connmun. ACM 39, 3 (Mar. 1996).
4. Ganesan, R. Yaksha: Augmenting Kerberos with public-key

cryptography. In Proceedings of the Internet Society Symposium
on Network and Distributed Systems Security, (Feb.) 1995.

5. Ganesan, R., and Yacobi, Y. A secure joint signature and key
exchange system. Bellcore TM-24531, Oct. 1994.

6. Kent, S. Privacy Enhancement for Internet Electronic Mail:
Part II: Certificate Based Key Management, Internet RFC
1422, Feb. 1993.

7. Needham, R.M., and Schroeder, M.D. Using encryption for
authentication in large networks of computers. Commun.
ACM 21, I2 (Dec. 1978).

8. Neuman, B.C., and Ts'o, T. Kerberos: An authentication ser-
vice for computer networks. IEEE Commun. (Sept. 1994).

9. Rivest, R., Shamir, A., and Adelman, L. On digital signatures
and public-key cryptography. Commun. ACM 27, 7 (July
1978).

10. Schneier, B. Applied Cuptography: Protocols, Algorithms and
Source Code in C. Wiley, New York, 1994.

About the Author:
RAVI GANESAN is Vice President for Information Technology
at Bell Atlantic and is with The Johns Hopkins University. Au-
thor's Present Address: Bell Atlantic, 1320 North Courthouse
Road, Arlington, VA 22304; email: ravi.ganesan@bell-atl.com

©ACM 0002-0782/96/0300 $3.50

6 Q March 1996/Vo1.39, No. 3 COMM,U l a ~ . A 1 t l O l ~ ¢ H U M ~ M

